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CeAPTER I
GENERAL INTRODUCTION

THE object of this seminar is to develop briefly one simple,
unified standard method, capable of dealing, without changing
the fundamental attitude, with all cases (classical, quantum,
Bose-Einstein, Fermi-Dirac, etc.) and with every new problem
that may arise. The interest is focused on the general procedure,
and examples are dealt with as illustrations thereof. It is not a
first introduction for newcomers to the subject, but rather a
‘repetitorium’. The treatment of those topics which are to be
found in every one of a hundred text-booksisseverely condensed ;
on the other hand, vital points which are usually passed over in
all but the large monographs (such as Fowler’s and Tolman’s)
are dealt with at greater length.

There is, essentially, only one problem in statistical thermo-
dynamics: the distribution of a given amount of energy ¥ over N
identical systems. Or perhaps better: to determine the dis-
tribution of an assembly of IV identical systems over the possible
states in which this assembly can find itself, given that the
energy of the assembly is a constant K. The idea is that there is
weak interaction between them, so weak that the energy of
interaction can be disregarded, that one can speak of the
‘private’ energy of every one of them and that the sum of their
‘private’ energies has to equal K. The distinguished role of
the energy is, therefore, simply that it is a constant of the
motion—the one that always exists, and, in general, the only
one. The generalization to the case, that there are others besides
(momenta, moments of momentum), is obvious; it has occasion-
ally been contemplated, but in terrestrial, as opposed to astro-
physical, thermodynamics it has hitherto not acquired any
importance.
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2 STATISTICAL THERMODYNAMICS

‘To determine the distribution’ means in principle to make
oneself familiar with any possible distribution-of-the-energy
- (or state-of-the-assembly), to classify them in a suitable way,
1.e. in the way suiting the purpose in question and to count the
numbers in the classes, so as to be able to judge of the prob-
ability of certain features or characteristics turning up in the
assembly. The questions that can arise in this respect are of the
most varied nature, and so the clagsification really needed in a
special problem can be of the most varied nature, especially in
relation to the fineness of classification. At one end of the scale
we have the general question of finding out those features which
are common to almost all possible states of the assembly so that
we may safely contend that they ‘almost always’ obtain. In
this case we have well-nigh only one class—actually two, but
the second one has a negligibly small content. At the other end
of the scale we have such a detailed question as: volume (= num-
ber of states of the assembly) of the ‘class’ in which one in-
dividual member is in a particular one of its states. Maxwell’s
law of velocity distribution is the best-known example.

This is the mathematical problem—always the same; we shall
gsoon present its general solution, from which in the case of every
particular kind of system every particular classification that
may be desirable can be found as a special case.

But there are two different attitudes as regards the physical
application of the mathematical result. We shall later, for
obvious reasons, decidedly favour one of them; for the moment,
we must explain them both.

The older and more naive application is to IV actually existing
physical systems in actual physical interaction with each other,
e.g. gas molecules or electrons or Planck oscillators or degrees
of freedom (‘ether oscillators’) of a ‘hohlraum’. The N of them
together represent the actual physical system under considera-
tion. This original point of view is associated with the names of
Maxwell, Boltzmann and others.

But it suffices only for dealing with a very restricted class of



GENERAL INTRODUCTION 3

physical systems-—virtually only with gases. It is not applicable
to a system which does not consist of a great number of identical
constituents with ‘private’ energies. In a solid the interaction
between neighbouring atoms is so strong that you cannot
mentally divide up its total energy into the private energies
ofits atoms. And even a ‘hohlraum’ (an‘ether block’ considered
as the seat of electromagnetic-field events) can only be resolved
into oscillators of many—infinitely many—different types, so
that it would be necessary at least to deal with an assembly of
an infinite number of different assemblies, composed of different
constituents.

Henceasecond point of view (or,rather, adifferent application
of the same mathematical results), which we owe to Willard
Gibbs, has been developed. It has a particular beauty of its
own, is applicable quite generally to every physical system,
and has some advantages to be mentioned forthwith. Here the
N identical systems are mental copies of the one system under
consideration—of the one macroscopic device that is actually
erected on our laboratory table. Now what on earth could it
mean, physically, to distribute a given amount of energy X
over these N mental copies? The idea is, in my view, that you
can, of course, imagine that you really had IV copies of your
system, that they really were in ‘weak interaction’ with each
other, but isolated from the rest of the world. TFixing your
attention on one of them, you find it in a peculiar kind of
‘heat-bath’ which consists of the IV —1 others.

Now you have, on the one hand, the experience that in thermo-
dynamical equilibrium the behaviour of a physical system which
you place in a heat-bath is always the same whatever be the
nature of the heat-bath that keeps it at constant temperature,
provided, of course, that the bath is chemically neutral towards
your system, i.e. that there is nothing else but heat exchange
between them. On the other hand, the statistical calculations
do not refer to the mechanism of interaction; they only assume
that it is ‘purely mechanical’, that it does not affect the nature

I-2



4 STATISTICAL THERMODYNAMICS

of the single systems (e.g. that it never blows them to pieces),
but merely transfers energy from one to the other.

These considerations suggest that we may regard the be-
haviour of any one of those NV systems as describing the one
actually existing system when placed in a heat-bath of given
temperature. Moreover, since the IV systems are alike and under
similar conditions, we can then obviously, from their simul-
taneous statistics, judge of the probability of finding our system,
when placed in a heat-bath of given temperature, in one or other
of its private states. Hence all questions concerning the system
in a heat-bath can be answered.

We adopt this point of view in principle—though all the
following considerations may, with due care, also be applied to
the other. The advantage consists not only in the general applic-
ability, but also in the following two points:

(i) IV can be made arbitrarily large. In fact, in case of doubt,
we always mean lim NV = co (infinitely large heat-bath). Hence
the applicability, for example, of Stirling’s formula for !, or
for the factorials of ‘occupation numbers’ proportional to N
(and thus going with & to infinity), need never be questioned.

(ii) No question about the individuality of the members of
the assembly can ever arise—as it does, according to the ‘new
statistics’, with particles. Our systems are macroscopic systems,
which we could, in principle, furnish with labels. Thus two states
of the assembly differing by system No. 6 and system No. 13
having exchanged their roles are, of course, to be counted as
different states—while the same may not be true when two
similar atoms within system No. 6 have exchanged their roles;
but the latter is merely a question of enumerating correctly the

states of the single system, of describing correctly its quantum-
mechanical nature.



CoparTeEr II

THE METHOD OF THE MOST PROBABLE
DISTRIBUTION

Wz are faced with an assembly of IV identical systems. We
describe the nature of any one of them by enumerating its pos-
sible states, which we label 1,2,8,4,...,1,.... In principle we
have always in mind a quantum-mechanical system whereby
the states are to be described by the eigenvalues of a complete
set of commuting variables. The eigenvalues of the energy in
these states we call ¢, €, €, ..., €, ..., ordered so that €141 = €1
But, if necessity arises, the scheme can also berapplied to a ‘ clas-
sical system’, when the states will have to be described as cellsin
phase-space (0, ¢) of equal volume and—whether infinitesimal
in all directions or not—at any rate such that the energy does
not vary appreciably within a cell. More important than this
merely casual application is the following:

We shall always regard the state of the assembly as deter-
mined by the indication that system No. 1 is in state, say, Iy,
No. 2 in state I, ..., No. N in state ly,. We shall adhere to this,
though the attitude is altogether wrong. For, a quantum-
mechanical system is not in this or that state to be described by
a complete set of non-commuting variables chosen once and for
all. To adopt this view is to think along severely ‘classical’ lines.
With the set of states chosen, the individual system can, at
best, be relied upon as having a certain probability amplitude,
and so a certain probability, of being, on inspection, found in
state No. 1 or No. 2 or No. 3, ete. I said: at best a probability
amplitude. Not even that much of determination of the single
system need there be. Indeed, there is no clear-cut argument for
attributing to the single system a ‘pure state’ at all.

If we were to enter on this argument, it would lead us far
astray to very subtle quantum-mechanical considerations.
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Von Neumann, Wigner and others have done so, but the results
do not differ appreciably from those obtained from the simpler
and more naive point of view, which we have outlined above
and now adopt.

Thus, a certain class of states of the assembly will be indicated
by saying that a,,a,, @3, ...,a;, ... of the N systems are in state
1,2,3,...,1,... respectively, and all states of the assembly are
embraced—without overlapping—by the classes described by
all different admissible sets of numbers a;:

State No. 1 2 3 ... 1 .
Energy € € €3 ... € ... (2-1)
Occupation No. a, ay, as ... a
The number of single states, belonging to this class, is ob-
viousl AT
Y P = N . (2-2)

alazlagl...a;t...
The set of numbers ¢;must, of course, comply with the conditions
Ea;"—-— N, Eelalm E. (2'3)
l 1

The statements (2-2) and (2-3) really finish our counting. But
in this form the result is wholly unsurveyable.
The present method admits that, on account of the enormous
largeness of the number N, the total number of distributions
(i.e. the sum of all P’s) is very nearly exhausted by the sum of
those P’s whose number sets a; do not deviate appreciably from
that set which gives P its maximum value (among those, of
course, which comply with (2-3)). In other words, if we regard
this set of occupation numbers as obtaining always, we dis-
regard only a very small fraction of all possible distributions
—and this has ‘a vanishing likelihood of ever being realized’.
This assumption is rigorously correct in the limit N oo
(thus: in the application to the ‘mental’ or ‘ virtual’ assembly,
where in dubio we always mean this limiting case, which corre-
sponds physically to an ‘infinite heat-bath’; you see again the
great superiority of the Gibbs point of view). Here we adopt this
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assumption without the proof which will emerge later from the
alternative method—the Darwin-Fowler ‘method of mean
values’.

For N large, but finite, the assumption is only approximately
true. Indeed, in the application to the Boltzmann case, the
distributions with occupation numbers deviating from the
‘maximum set’ must not be entirely disregarded. They give
information on the thermodynamic fluctuations of the Boltz-
mann system, when kept at constant energy Z, ie. in perfect
heat isolation.

But we shall not work that out here, partly on account of the
very restricted applicability of the Boltzmann point of view
itself, and also for the following reason: Since the condition of
perfect heat isolation cannot be practically realized, the results
obtained for the thermodynamic fluctuations under this, non-
realizable, condition apply to reality only in part, that is, in so
far as they can be shown to be, or can be trusted to be, the same
‘as ‘under heat-bath condition’. Now the fluctuations of a
gystem in a heat-bath at constant temperature are much more
easily obtained directly from the Gibbs point of view. Hence
there is no point in following up the more complicated device to
obtain information which really only applies to an ideal, non-
realizable, case.

Returning to (2-2) and (2:3), we choose the logarithm of P
as the function whose maximum we determine, taking care of
the accessory conditions in the usual way by Lagrange multi-
pliers, A and g; i.e. we seek the unconditional maximum of

log P— A }Eaz~ﬂ zl‘_le,a,z; - (244)
for the logarithms of the factorials we use Stirling’s formula in

the form log (n!) = n(logn—1). (2-5)
And, of course, we treat the a, as though they were continuous
variables. We get for the variation of (2-4)

— X loga;0a;,— A 2 day,— p Zie,ba, =0,
) l l
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and have to equate to nought the coefficients of every da;, thus

(for every {) log a;+ A+ e, = 0,

or G == e~ A—He,
A and x are to be determined from the accessory conditions, thus

ZeA-pe =N, DegerA~uey=F.
_ 1 l
On dividing, member by member, we eliminate A, but we can
also obtain e~ directly from the first formula. Calling Z/N = U

the average share of energy of one system, we express our
whole result thus:

B Zeemra 0O .
¥ = U= Frm = Tgplosse
N (2:6)
e HEY e
a; = Nze_ﬂel————;zé—llogze #eq

The set of equations in the second line indicates the distribution
of our N systems over their energy levels. It may be said to
contain, in a nutshell, the whole of thermodynamics, which
hinges entirely on this basic distribution. The relation itself is
very perspicuous—the exponential e—#¢indicates the occupation
number a; as a fraction of the total number IV of systems, the
sum in the denominator being only a ‘normalizing factor’. But,
of course, x would have to be determined from the first equation
as a function of the average energy U and the ‘nature of the
system’ (i.e. the ¢;’s); and, naturally, it is impossible to solve
this equation generally with respect to u. In fact, it is obvious
that the functional dependence between x and U is certainly
not universal, but depends entirely on the nature of the system.

But very fortunately we can give to our relations a very
satisfactory general physical interpretation, without solving
that equation with respect to u, because the latter (originally
introduced just as a Lagrange multiplier, as a mathematical
help) turns out to be a much more fundamental quantity than
U; so much so, that the physicist is gratified to be given, in
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every particular case, U as a function of it, rather than vice
versa, which would be quite unnatural.

To explain this without too many qualifications, we now
definitively adopt the Gibbs point of view, namely, that we are
dealing with a virtual ensemble, of which the single member is
the system really under consideration. And since all the single
members are of equal right, we may now, when it comes to
physical interpretation, think of the a;, or rather of the a,/V,
as the frequencies with which a single system, immersed in a
large heat-bath, will be encountered in the state ¢;, while U is
its average energy under these circumstances.

We now apply our results (2-6) to three different (assemblies
of) systems, viz.

A B  A+B, } @)

levels: r  Pm €= r+Lfm-

By this we mean that in the first and in the second case the
single members shall be any two different systems of the
general type considered hitherto, while in the third case the
single member shall consist of one system 4 and one system B
put into loose energy contact, so that the general energy level
" in the third case is the sum of any a,, and any f8,, (the index 7
standing really for the pair of indices (k,m)). A moment’s con-
sideration shows that in the third case the sum splits into a
product of two sums, thus:

Xemhe = 3 Ve Hapthy) = ety 3 ey, (2-8)
l kE m k m
Hence from (2-6)—always in this third case—the general
occupation number a; (which we may equivalently label ay, )

reads e—ile 5,

E e Hxy 2 8—/"/“m '
k m

=g, m) = N (29)

We continue to speak of the third case and inquire, what is the
number of systems ‘4 + B’ with 4 on the particular level o, ?
It is clearly found on summing (2-9) over all m. In the result the
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Ze~#f cancels in numerator and denominator and we are left with
e My

e~ Hoy”

e

It is thus seen that the entire statistical distribution of the 4
systems in the third case (including inter multa alia the mean
value of their energy) is exactly the same as it would be in an
A assembly (first case) provided that we arrange (by a suitable
choice of F/N in the A case) for the value of x to be the same in
the two cases.

Since the same consideration applies to system B, we have,
according to our interpretation, that if you put the systems
A and B into loose contact with one another and put them
in a heat-bath, each of them behaves exactly as it would
when put into a heat-bath by itself, provided only that the
three heat-baths are chosen so as to make the x values equal in
the three cases. In other words, if that is done, the established
energy contact is idle and there is, on the average, no mutual
influence or energy exchange.

This can hardly be interpreted otherwise than that equal #
means equal temperature. And since you can choose a standard
system 4 once and for all (‘thermometer’) and put it into contact
with any other system B, # must be a universal function of the
temperature 7.

This conclusion will be considerably strengthened when we
proceed to determine explicitly what function of the temperature
K is.

For this purpose it is well to take stock of an obvious but very

important by-product of our preceding considerations. We have
seen that in the ‘ 4 4 B’ case the

2 Ape,m) = N
m

2ieTHE = 2 e—H 3 oMo,
i k m

Hence the function of 4, which we shall see to be veryimportant,
viz.

log X e—xe - (2-10)
1
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(whose usefulness is clear from the last members of (2-6)) is
additive for two systems in loose energy contact. That is the
obvious, but relevant, statement to which I referred above.

Now what is the functional relation between u and 71'? To
tell the ‘true’ absolute temperature 7' from the lot of its mono-
tonic functions f(7'), there is, asis well known, only one eriterion:
1/T is a universal integrating factor of the infinitesimal heat
supply 4@ in thermodynamic equilibrium—universal, that is to
say, for any system. No other function of 1’ has this property—
it is the definition of 7" (Kelvin).

To avail ourselves of this definition, our model is still in-
adequate. For, with the ‘nature’ of every system (i.e. its
levels ¢;) fixed once and for all, everything depends on one para-
meter, u or U—or 7'. With a single variable the notion of
‘integrating factor’ collapses, for with dx, any ¢(x)dx is also
‘a complete differential’. Hence, to identify 7', we must intro-
duce the notion of other parameters or, what is the same thing,
the notion of mechanical work done by the system.

Let us put, for the sake of brevity,

log Ze—#e = F, (2-11)
1

which is to be regarded as a function of 4 and all the ¢;’s; and let
us write down, using (2-6), an undoubtedly correct mathe-
matical relation, of which the physical application will follow

presently:
7 ar =2 4, 9%
ou 8 z
T - Ud,u,-—-w Ea;del, (2'12)
and thus A(F+Up) = ( U——-— = a,,dq) (2-13)

We apply this to the following physical process, to which we
subject our assembly of N systemns.

We assume that each of them has identically the same
‘mechanism’ attached to it, screws, pistons and what not, which
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we can handle and thereby change its nature (i.e. the levels €z)-
We do so, changing, of course, the ¢;’s for all of them slike in
order that the basic condition of IV identical systems, on which
all our reasoning rests, shall be maintained. In addition, we also
procure a direct ‘change of temperature’, by coupling our
assembly with a large heat-bath (of the same temperature),
changing the temperature of the whole very slightly and then
isolating the assembly again from the heat-bath.

When (2-13) isapplied to this process, @;de,is the work we have
to do on the pistons, etc., attached to these @, systems in order
to ‘lift them up’ from the old level ¢, to the altered leve] e+ deg;
Zia,de; is the work done in this way on the assembly, —Xa,de;
the work done by the assembly, and —-%7 2a,de;the average work
done by one of the members. And hence, since dU is its average
energy increase, the round bracket to the right of (2:13) must
be the average heat supply d@ supplied to it. /t 18 seen to be an
integrating factor thereof. This alone really suffices to say that
# must be essentially 1/7', because there is no other function
of T which has this property for every system. And so F+ Ugpe
must be, essentially, the entropy.

To give a more direct proof, call

F4+Uu = Q. (2-14)
Then, from a general mathematical theorem, the ratio of the
two integrating factors 1/7" and u is a function of G-

1

= (&) say. (2-15)

Hence from (2-18) dQ y o>
A G = 57 = 48, (2-16)
where § is the entropy. This, on integration, yields ¢ as some
function of S, say @ = x(8). (2-17)

Now from (2-14), (2-11) and (2-6)
7
G =log z:.] ek — gy 5;10@ Ez e—He;
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‘behaves additively’ when two systems are combined (since
log Xe—#6 does). Calling the y function of (2-17) x in the case
of a system 4, yg for a system B and x,p for the combined
system ‘44 B’, and calling the entropies in these three cases
8 4, Sp and 8,5 respectively, we have

X4(84)+x5(88) = X4p(S4p)-
On the other hand, the entropy, too, is an additive function, or

at any rate S5 =8,+85+0C,

where C is independent of § 4 and Sz. Hence
X4(8.4)+x588) = X4p(S4+Sp+0).

If you differentiate this equation once with reSpect' to 8 4, and
again with respect to Sz, and compare the results, you get

¥'4(84) = X5(Sp) = universal constant

= 1/k (say).
Thus, from (2-17), (2-16) and (2-15)
| 1
P = v (2-18)

and 8 = kG +const. = klog = e*ez/’°T+—g+const., (2-19)
z

where the const. is at any rate independent of 7' and- of the
‘parameters’ (as volume, ete.) on which the ¢,’s depend.
We drop the ‘ const.’, pending an analysis of what that means.

Then we have 9
klog Ze—e/FT = S—a = . (2-20)
z

We have thus obtained a general prescription—applicable to all
cases (including the so-called ‘new’ statistics)—for obtaining
the thermodynamics of a system from its mechanics.
Form the ‘partition function’ (also called ‘sum-over-states’;
German Zustandssumime)
Z == %e"‘ﬁz/’ﬂ'. (2-21)

Then klog Z (where k is the Boltzmann constant) is the negative
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free energy, divided by T (with Planck we have introduced the
letter ¥ for this function). From the comments made on (2-13)
it is easily seen that our klog Z is the thermodynamical ¥ func-
tion in every respect, not only for changes of temperature but
also for changes of the parameters (as, for example, the volume
V) on which the ¢; may depend. Thus the average forces with
which the system ‘tends to increase these parameters’ (e.g. the
pressure p, in the case of the parameter volume) are found by

the formulae familiar from thermodynamics, the prototype
being

o 0
- —— T — - /kT .
P T@V kTavlog Eze e/kL, (2 22)
while the first equation (2-6),
7 oV
— — i — L€ ] 2_______ .
U aﬂlogizle ey = T 57 (2:23)

is an equally well-known formula of general thermodynamics
(in all this ¥ is to be regarded as a function of 7' and such
parameters as ¥, on which the ¢; may depend; macroscopically
these parameters must fulfil the requirement, that when they
are kept constant the system does no mechanical work®). Thus
the statistical treatment, by yielding in principle ¥ as a function
of T' and the parameters like V, yields exhaustive information
on the thermodynamical behaviour. (It is well known that a
certain thermodynamical function yields complete information
only when known as a function of certain variables. For ex-

ample, Y(T,p,...).-or S(T,7V,...) does not, but, for example,
S(U,V,...) does.)

* Against the treatment given here it could be objected that
experimentally it is just as impracticable to keep such parameters
as V exactly constant as to realize a complete heat isolation.
A statistical treatment which introduces instead of the V’s rather

the quantities like p as parameters is perfectly possible, perhaps
preferable, but considerably more complicated.



CuarrTERr III

DISCUSSION OF THE NERNST THEOREM

WE turn to the question of what it means to have put the
‘const.’ zero in (2-19). Formally, it means adopting in every case
adefinite zerd level for the entropy, which by elementary thermo-
dynamics (excluding, for the moment, Nernst’s theorem) is
1 |
only defined by 19 _ C}_Q,
T
thus only up to an additive constant. Moreover, the zero level,

thus adopted, is very simple and general. Indeed, if we write
more explicitly Z &, 6=/ T

S = klog 2 e~k T +-1-

> e~k ?
l

we capn watch the behaviour of 8 at 7' = 0. Assuming for
generality that the first » levels are equal (¢ = €3 = ... =¢,)
and the following m levels (€,,1 = €40 = +«- = €5.m), then we
can, for the purpose of finding the limit, certainly break off the
sum after the (n+m)th term and obtain

1 neye~/m T + me, 4 enn/oT
T nes/*T 4 me=enp/T

Considering that the second exponential becomes, near the
limit, very small compared with the first, we easily get

S = klog (ne=c.*T 4 me~6nt/%T) 4 —

km Im, v
8 = klogn— —T~+ - CRICERT 7 Ly T (Enyq— €1) € Cnri—e)ET,
and thus lim S=Eklogn.

T=0

This is practically zero, unless n were extremely large. To give
an example: if the system were one mole of a gas (L molecules,
say) and n were only of the order of L, klog L would be practic-
ally zero, because the order of magnitude that matters in this
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case is kL (= R = gas constant), against which % log L vanishes.
But if we assumed that every molecule of the gas was capable
of two different ‘lowest states’ with exactly the same energy,
we should have » = 2L, and S(0) = kLlog 2 = R log 2, which is
appreciable. Modern gas theory assumes that such is not the
case. |

Tt is well known that to adopt 8 = 0 at T' = 0 for every system
is the conventional and most convenient way of pronouncing
Nernst’s famous heat theorem, sometimes called the Third Law.
Have we then, by establishing (2:19) and by the subsequent
considerations of thissection, giventhe heat theorem a quantum-
statistical foundation? At first sight it seems mnot, since our
putting const. = O was an entirely arbitrary step.

Yet we have. For in point of fact—and contrary to what is
often maintained—the numerical value of that const. is-irrele-
vant, even meaningless. The relevant fact is that it is a constant,
in other words, that that part of the entropy which does not
vanish at T = 0 is independent of the ‘parameters’. This fact
entails the heat theorem statistically (as we shall immediately
explain) in every particular case, and so in general, provided
always that we exploit the idea of ‘changing parameters’ in
the most general determination of which it is capable.

The mathematical part of the proof is simple enough: since
the ‘ const.’ is independent of the parameters, one and the same
system approaches to the same entropy value, when you cool
it down to zero, whatever the values of its parameters. In other
words, the entropy difference of two thermodynamical states of
the same system, differing by the values of the parameters,
approaches to zero at 1" = 0.

Now the vanishing of this entropy difference is the only
empirical content of the Nernst theorem. But in the truly
important applications of the theorem, the two ‘thermo-
dynamical states’ are so widely different that it needs a moment
of reflexion to realize that they can be embraced by our notion:
the same system with different values of the parameters.



DISCUSSION OF THE NERNST THEOREM 17

A typical case would be a system consisting of L iron atoms*
and. L. sulphur atoms. In one of the two thermodynamical
states they form a compact body, 1 gram-molecule of FeS; in
the other, 1 gram-atom of Fe and 1 gram-atom of S, separated
by a diaphragm, so that they can under no circumstances unite;
the much lower energy levels of the chemical compound are made
inaccessible. '

Now in all such cases it is only a question of believing in the
possibility of transforming one state into the other by small
reversible steps, so that the system never quits -the state of
thermodynamical equilibrium, to which all our considerations
apply. All the small, slow steps of this process can then be
regarded as small, slow changes of certain parameters, changing
the values of the ¢’s. Then the ‘const.” will not change in all
these processes—and the statement applies.

For instance, in the example mentioned, you would gradually
heat the gram-molecule of FeS till it evaporates; then go on
heating till it dissociates as completely as desired; then separate
the gases with the help of a semi-permeable diaphragm; then
condense them separately by lowering the temperature (of
course with an impermeable diaphragm between them) and cool
them down to zero. Having once or twice gone through such
considerations, you no longer bother to think them out in detail,
but just declare them as ‘thinkable’—and the statement
applies.

After this has been thoroughly turned over in the mind the
simplest way of codifying it once and for all is, of course, to
decide to put ‘const.” = zero in all cases. It is possibly the only
way to avoid confusion—no alternative suggests itself. But
to regard this ‘putting equal to zero’ as the essential thing is
certainly apt to create confusion and to detract attention from
the point really at issue.

* By L we mean ‘Loschmidt’s number’, often called Avogadro’s
number, the number of molecules in one mole. We call it I because
N is used up.

S$8T 2



CHAPTER IV
EXAMPLES ON THE SECOND SECTION

FirsT a simple, but useful, remark. We have stated that
7 = 2le—he
I
is ‘multiplicative’ and thus
VY =Fklog Z = klog X e re,
l

and all the other thermodynamical functions are strictly addi-
tive, if the system in question is made up of two or more systems
in loose-energy contact, so that its levels ¢; are the sums of any
level of the first system («;) and any level of the second system
(Bm)s etc.

A mathematically trivial, but physically relevant, remark is
that the same ‘multiplicative’ or ‘additive’ composition obtains
also if all the levels €;are the sums of two, or more, different kinds
of levels in all combinations, even though the system itself is
not really a juxtaposition of two, or more, systems.

For example, if the system is one gas molecule whose energy
is the sum of its translational, rotational, and vibrational
energy, all the thermodynamic functions are made up additively
of a translational, a rotational, and a vibrational contribution—
the mathematical situation being the same as if these three types
of energy belonged to three independent systems in juxta-
position.

Similarly, we can deal with an ideal gas (L molecules in loose-
energy contact) by first dealing with one molecule under the
same conditions and then multiplying the thermodynamic
functions by L. But that is, of course, nothing more than an
application of the original idea of ‘additivity’ concerning two,
or more, loosely coupled systems.

Very much more extended use of these remarks can be made
than is done in the following simple examples.
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(a) Free mass-point (ideal monatomic gas)

We are giving the old-fashioned, conventional treatment,
dealing ‘classically’ with the mass-point. Without bothering
about possible quantization we take as levels the cells of phase-
space—rthe six-dimensional space of

Z, Y 2, Pz Py Pz
The energy is §%ﬁ( Pi+pi+pk), m being the mass. Z is the

wntegral (replacing here the sum over-states) of
e~ pZ + pi+p3) dxdydzdp,dp,dp,

over the whole of phase-space (x4 stands as an abbreviation for
1/kT). Over the first three variables the integral is ¥, the
volume, over the others it goes from —o0 to 4 oco. Thus

-}~ o
7=V f f J e-—;c/2m(z¢;§+z>3-l—m§) dpm d D, d D

with an obvious transformation of variables

2m\} T
7 — V(7) f f f ~EHI AL d dE.

The integral is a constant, which does not interest us, since we
are for the moment only interested in the derivatives of the
logarithm of Z. Thus

¥V =Fklog Z = klog V+%]flog T +- const.

This for one atom. For L of them (kL = R)
¥ = Rlog V+ 2R log 7"+ const.
From this we deduce, by (2-23) and (2-22),
s
U=1T0"=4RT, p=T5,

the well-known formulae. This treatment is considered wrong

o
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nowadays. The modern treatment will be given later. It

involves the mathematical methods to be developed in the
next section.

(b) Planck’s oscillator

* The levels are a=00+Hr (@=0,1,2,3,...).

Hence Z = 3 o—pho(+d) (put shy = hy )

120 T 7
@© 1 1
= g—iw =l — g—} = .
© 150 € e l1—e® 2sinh ix

Hence VY =rFLklogZ = —klog sinh }x — klog2,
o cosh 3z 1 hy
— qZt _ _ 1me -0

U__* T oT kT sinh%x.?( kTg)

hve¥® fe—t¢ Ry ]

— T e e S

hy hv
- ekl __1°

which is the well-known expression, in which the ‘zero-point
energy’ 34 is usually dropped.

(¢) Ferms oscillator

This is a particularly simple system (invented, as we shall see
later, to formulate ‘Fermi statistics’). It is a thing capable
only of two levels, 0 and 6. Hence

7 = 1 +e*€/70T’
VY= Eklog(1 + eelkT),

o e—elkT €
o 27
v=r oT — kT21+e-e/kTicT2
€

T e T "

C.'ompa,re this with the relevant second term on the right-hand
side of the last equation of the preceding section (taking there
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t= o), There 8 Just ne remarkable diference i s, 71
the denominotor, We shall see Joter thet this constitutes the
relevant diference befween *Einstemn-Bose stafitics” and
TermiDiac taistics

The themmodyeamical unetions of & sytem composed of [
Planck osclatos o of L Rerm osilators would, of ourse, b
Obtined on multplying by L,
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FLUCTUATIONS

To render the ‘method of the most probable distribution’,
which we have used and which recommends itself by its great
simplicity, entirely satisfactory, one would have to furnish a
rigorous proof that its tacit assumption is justified, viz. that at
least in the limit N - oo (which we always mean when dealing
with virtual Gibbs ensembles) the deviations from the ‘most
probable distribution’ can be rigorously neglected.

It is worth while to mention one very plausible proof, though
it is not quite flawless. (Quite good text-books offer it as a full
proof, disguising it rather better than I propose to do here.)

Returning to the considerations (2-1), (2-2) and (2:3), we
notice that the mean value of any a,, in all distributions is

_ Z'aP

----—-
—

the sums to be understood over all sets a; compatible with (2-3),
while a,, P in the numerator means that every P is to be multi-
plied by the particular value which the particular occupation
number a,, has in that P.

Now change the definition of P formally by saying
, !
P N!
alay!...a,!...
on the understanding that the w’'s have eventually to be equated
to 1. Then (5:1) can be written

- dlog 2P
i, =, af) (5-3)

(on the same understanding) and

P - 2032 P Wy 0 02 P
= TP " IPu, \"" B0

o Y, (a)m oL P W,y 02 P\2
" 0w, \ZP dw,, 2P dw,,

wPwdE ... 0¥ ..., (5:2)
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. . dlog 2P
2 % == Sy o
Hence O (@) = o 0w, (wm O, )
aa,, '
== wmm 2 (5 4:)

from (5-3). (Againall thew,,’s havetobeequated tol eventually.)

All this is completely rigorous. But now we have to form an
opinion about 6&,,/0w,,, i.e. of how gG,, changes when w,, changes.
To do so, we have to interpret the preceding formula also with
the w’s not equal to 1 (with at least w,, differing slightly from 1).
Now the expression (5-2) for P is actually often used in such
considerations as that given in Chapter 11, the »’s meaning the
weights attributed to the various levels, according to their
agsumed degeneracy. Had we done so in Chapter 1r it would
have made a very slight formal difference, namely, the e—#¢
would always be accompanied by w,, e.g. the ‘most probable’

a, would be @, e~H6m

;Zwle:ﬁz
(to replace the second line in (2-6)).

From the preceding equation it is at least permissible to
suggest that—with all the other w,=1 and only v,, varying
slightly in the neighbourhood of 1—a, is very mearly pro-
portional to w,,. If that is admitted, then from (5-4) the view
that in the limit &V — o0 we have

(5-5)

@y = Ay

(the latter meaning the ‘most probable’) is consistent. For,

indeed, then oa oa,
wméZ)—;,; - wmém == gy, = Uy, (56)
and R (L (5-7)

That is to say, the ‘dispersion’ or fluctuation is ‘normal’ and
vanishes practically, as N and thereby all the &, go to infinity.

In most cases of application it is intuitively certain that the
mean occupation number is very nearly proportional to the
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weight of the level, even for much larger chahges of the weight of
one level, e.g. if it is doubled or trebled. Indeed, with a big
system it means a negligible modification of the system as a
whole; and the two or three levels of the same description will,
together, accommodate two or three times as many members
of the ensemble. But that our conclusions are not entirely
rigorous can be seen, if we use the first line of (5-4), thus:

2
& (@, mwmalogEP_*_ , 02log 2P

Ow,y, Wm Ows,
- Rlog 2P
= Uy, = + Q)E‘n '————"‘"““852 . (5.8)

Here we see the term we have neglected. (It would be sufficient
to prove, either that it is negative or that it is at most of the
order of @,,.)

An example of a system for which (5-7) fails—though a
trivial one and one for which the dispersion is still smaller—is
furnished by a single Fermi oscillator (forming the system—

and, of course, N of them the Gibbs ensemble). We have in this
case

N!

| P =g (5:9)
with ayt+ay, =N and 0.qy+e¢c.a, =E,
hence = -f—' and ay=N _E .

€

Hence the numbers are fixed, the dispersion is strictly zero. It
is obvious that if we let the single system consist of two or four
or five Fermi oscillators, the relation (5-7) would still not hold
exactly, but hold only as to order of magnitude.

The ‘method of mean values’, explained in the following
chapter, will yield an alternative proof of this order-of-magni-

tude-relation, i.e. of the vanishing of the dispersion or fluctua-
tion in the limit N - co. |
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Carefully to bedistinguished from these (in the limit vanishing)
fluctuations in the composition of the Gibbs ensemble are the
fluctuations among the members of the ensemble, of which the
ensemble is precisely the adequate representation, by con-
taining systems in all sorts of different states ¢, €,,...,€;,....

The simplest and a very important case is the fluctuation of
the energy—the simple fact that the single systema have
various energies, €;, €, ..., €y, ..., not all of them U. Now we had*

Zeemhe 1
U= MZ;—!‘% = €, (,u, = W) .
Differentiate this with respect to u (with the ¢,’s constant, i.e.
‘without external work’):

oU 262 e~ ke (Zeze"!“fz)""

R

a,u, 2le—Hey Ze—une
oUu oU
- P (EN2 = Y 2
giving e — (&) n kT 57
or Jiet— (&)} = J(kT .0T), (5-10)
where we have introduced o517
C =37

for the heat capacity ‘without external work”’.

Equation (5-10) for the ‘mean square fluctuation’ has a very
intuitive meaning. For many macroscopic systems at not too
low a temperature C7' can be regarded as roughly indicating the
‘heat content’, and this, grossly, as of the order nk7', where n
is the number of degrees of freedom. of the system. We see that
in these cases the fluctuation is roughly of the order kT \/n—
which is very perspicuous to the statistician.

‘Without external work’ will as a rule mean ‘with the para-
meters, as volume, kept constant’. I expressed it as I did in
order to be able to include an interesting case with ‘infinite’
heat capacity and, therefore, ‘infinite’ fluctuations.

* The bar (¢;) has now an entirely different meaning, which the
reader will realize, without introducing a different notation.



26 STATISTICAL THERMODYNAMICS

If you enclose a fluid with its saturated vapour above it in a
cylinder, closed by a piston, loaded with a weight
to balance the vapour pressure—the piston glid- | Vacuum
ing frictionlessly within the cylinder—and put it
in a heat-bath, then you may include the piston &Y
and the weight in what you call the system and
no ‘external’ work is done, even if the piston
moves. Under these circumstances ¢ = co, be- | vBPOUT
cause any heat taken up or given off by the system
will not change its temperature, but produce [« iy
evaporation or condensation respectively. Any [isiiirtiiish
amount of fluctuation is thus to be expected,

until either all the substance has been condensed or all
evaporated.




CHAPTER VI

THE METHOD OF MEAN VALUES

W= now resume the problem of Chapter 11 by a new method
for several reasons. Tirst, because the considerations of
Chapter v failed to render the ‘method of most probable values’
entirely rigorous; the present method, which we owe to Darwin
and Fowler, appeals to some scholars as being more convincing,
perhaps even entirely exact. Secondly, it is always attractive
and illuminating to see that identically the same result can be
obtained by widely different considerations, especially if it is a
question of a very general theorem of fundamental importance.
Thirdly, the mathematical method to be developed here will
prove very useful in other applications as well.

We aim at calculating actually the mean values of the q; in
the Gibbs ensemble, as indicated by (5-1). We avail ourselves of
the manceuvre explained in (5-2), (5-3) and (5-4), in virtue of
which all the desired information is reduced to the knowledge
of the one quantity

| N

p— ay G2 ay .
ZP (%l)al!az!'..al!...wl wz ..-wz .CI’ (6 1)

the sum to be taken over all sets a, that comply with (2:3). So
all we have to do is to compute this sum.

If the only restriction on the a; were Xa, = N, this task would
be solved immediately by the polynomial formula and the sum
would be (W + Wyt ws+... +0;+ ... )Y,
at least formally (one would have to cut off the series of levels at
some very high level to make the result finite). The second con-
dition Za,e; = E automatically restricts the number of terms in
(6-1), because no level ¢;> I/ — (N —1) ¢, can ensue, but at the
same time it constitutes the real difficulty of the problem, which
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congsists in selecting only the terms complying with this con-
dition as well.

To cope with it we use the following artifice. We compute
the following sum without the second restriction:
P g A e

N1 |

- Zal ta,!...a,! ... (0125)% (092%)% ... (W1251)% ...

= (0,26 + W26+ ... + w26+ .. )Y = f(2)¥, (6-2)
where f(2) = 0,25+ w282+ ... +wyzo1+ .. .. - (6-3)

Now supposing all the ¢;and E were integers, then the P which
we need is obviously the coefficient of zZ in the function (6-2)
of z; it could be-computed by the method of residues in the
complex z plane.

To malke this plan work, we must—and here the artifice comes
in—declare that we have at the outset chosen the unit of energy
so small that we can with any desired accuracy regard all the
levels e; and the prescribed total energy Z as integral multiples
of this unit—or, if you prefer, replace them by integral multiples
thereof without appreciably changing the physical problem.
There are, of course, cases where this would appear to be im-
possible, in particular when the levels ¢, crowd infinitely dense
near some finite energy e, as is, for example, the case with the
electroniclevels in the hydrogen atom in open space. We exclude
such cases, which, as can be shown, are altogether not amenable
to any statistical treatment without special precautions (e.g.
the hydrogen atom would have to be enclosed in a large but finite
box, preventing the electron from escaping to infinity).

It is convenient to make two further restrictions about the €.
First, if ¢;20, we use the levels 0, e,—e,, €3—€y, ..., 6,— ;5 ---
instead of €, €, ..., ¢, ..., replacing at the same time E by

E—Ne,. A glance at (6-3) and at the following formula (6-4)
shows that this makes no difference, it is only more convenient

for the wording of our mathematical language. For the sake of
simplicity we assume ¢ = 0. Secondly, we assume that the ¢;’s
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have no common divisor. That can always be attained. For if
they had, & would also have to have it, to make the condition
Za,e, = K strictly capable of fulfilment. Thus if 7 be the greatest
common divisor, we choose the energy unit 7 times larger, which
will remove the divisor, yet leave all the values integers.

Once this is agreed, the solution is simply and obviously

2P = E—:—Ta § 2~E-1 f(2)V dz,

(6-4)

the integration to be conducted /

along any closed contour around

the origin in the complex =z

plane—and, let me say, within

the circle of convergence of f(z),

to avoid the need of analytical

continuation.

The integral is evaluated by the method of steepest descent
(German Saitelpunktsmethode = method of the saddle-point).
Envisage the behaviour of the integrand, as you proceed from 0
to infinity on the real positive axis, remembering that in (6-3)
all the w’s are virtually = 1 and that 0 = ¢; <e,<¢eg.... The first
factor of the integrand, viz. z—E—1, starts from an infinite positive
value and decreases rapidly and monotonically. The second
factor, viz. f(z)¥, starts at z = 0 from the value 1, increases
monotonically, tending to infinity as z approaches the circle of
convergence of f(z), wherever that may be. Moreover, the
relative decrease of the first factor, viz.

B+l
2 2

o)
w

decreases itself monotonically from being +co0 at z =0 to 0 at
z = 00; the relative increase of the second factor, viz.
Eezzel

'@ i
NT(z) =N 2ze
Z
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exhibits the opposite behaviour. It is zero at z = 0 and increases
monotonically. Indeed,

g (N f'(z)) =N Zﬁf‘z"" %W—(%emzem)z.
2\ f(z) Sy

Here the numerator can be written thus:

E Em 26m\ 2

€ €p) -
Ezz GZ:-\*-/(%ZI:) j*q/(%ze") >0,

showing that it is positive.

Under these circumstances the integrand is bound to exhibit
one and only one minimum (and no other extremum) within
the circle of convergence of f(z). This minimum may be expected,
and will in due course be shown to be very steep, considering
that both the exponents, viz. £+ 1 and N, are very large num-
bers. For, what we have actually and constantly in mind is the
transition to the limits &N — o, E — 00, with the ratio E/N kept
constant, since it is the average energy available to one system
of the ensemble.

In other words, at this point on the real positive axis (which we
shall call z, for the moment, but later drop the subscript zero
again) the first derivative of the integrand vanishes and the
second must be positive and can be anticipated to be very large.
Hence if you proceed from this point orthogonal to the real axis,
where the increment is purely imaginary, the integrand will
exhibit (while remaining real at first) an exceedingly sharp
maximum. We take for the contour of integration in (6-4) a
circle, with the centre at O and passing through the point z = z,,
hoping that only the immediate neighbourhood of this very
sharp maximum will essentially contribute to the value of the
integral. We shall prove this in due course.

We first determine the value of z, by the vanishing of the first
derivative and determine the value of the second derivative at
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2 = z5. It is convenient to use logarithmic derivatives. Put, on
the real positive axis, 2~E-1f(2)N = o) (6-5)

(taking, of course, the main branch, i.e. the real value for g(z)).
Then z, is determined by

E+1 Nf(zO)—-O

(o) = — 0L 4y L) (6-6)
moreover g"(e0) = o + V(8 ). (67)

This shows (i) that with Z and N already very large, z, will not
change, if you increase K and N proportionally; (ii) hence g”(z,)
will in this case change proportionally with F and N and can
thus be made, indeed, as large as you please (that it is positive
need not be tested, since that follows from the general con-
sideration).

Hence for a very small purely imaginary increment iy of z
near z = 2, the integrand can be written

zZgE-1(f(2 u))N e—bv? 9”@ (6-8)
and the neighbouring part of the circle of integration will (with

any desired accuracy, if g”(z,) i1s made sufficiently large by
increasing N) yield

[ZP] = 52y P (o) f 0" § 0y

1
2mg” (7o)}
We have enclosed X2 P in brackets, because it remains to be
shown that this is all, that the contribution from the rest of the
circle is negligible for IV large.

* [The intuitive reason of this being so is, that the single
terms of the series (6-3), which all ‘reinforce’ each other on the
real axis, will, as z proceeds along the circle, ‘rotate’ round the

== ZOE 1f zO)NJ{ (6'9)

* The reader may interrupt the reading of the following lengthy
proof, enclosed in [ ], wherever he pleases.
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origin with different speeds, as the various integers ¢, prescribe;
with the result that (outside the immediate neighbourhood of
z = z,, which has been taken care of) | f(z) | will in general be
considerably smaller than f(z,). Now the ratio of the absolute
value of the integrand at an arbitrary point z of the circle to

that at z =z, is {[ f(2)| }N,

J(2o)
which, for IV large, will become arbitrarily small, also compared
with the last factor in (6-9), viz. (279"(2,))~%, which is itself
small, but only of the order N-%* To make the conclusion
rigorous, we have to show that the maximum value of | f(2) |,
. say M, is definitely smaller than f(z,):

MM < f(zy)- (6-11)
For, then, the contribution of the rest of the circle to the abso-
lute value of the integral is certainly not larger than

. N
57PN 2m = ) () (612)

which, for & — o0, is negligible compared with (6-9).

To prove (6-11) we observe that equality, M = f(z,), could
only occur if at some point z on the circle, definitely different
from z,, all the terms in (6-3) again reinforced each other. Since
the first term is real and positive (¢; = 0), they would all have to
be real and positive there. Let ¢ (<2m) be the phase angle at
that point. Then all the products

6.9, €P, ..., b, ...,
would have to be integral multiples of 277 and all the integers
¢;integral multiples of 277/¢, say
2m

el
But this cannot be, unless ¢ = 27 (i.e. at z = z;). For, if 27/¢
were >1, it would have to be a rational fraction p/g with a
numerator larger than 1, even when written with smallest
integrals p, g. Then p would be a common divisor of all the ¢,
which is contrary to our assumption that there should be none.

(6-10)

Ei=n
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This proof is rather sophisticated and not very satisfactory
to the physicist, who hesitates to beliove that one single lovel
¢, could all but upset the apple-cart. Indeed, what might con-
ceivably happen is that all but one have a fairly large common
divisor p, which could not be removed on account of the ono
which does not possess it. Itis therefore well to be satisfied that
even such a ‘single dissenter’ would prevent the maximum M
from approaching arbitrarily near to f(zo). Indeed, since not all
the ¢, are to have a common divisor, they must attain this
property (the property, that is, of having none) at some finito
point of the series, say €,. The supposed ‘dissenter’ can then
only occur for ¢,<¢,, and that obviously also sets an upper
limit to the supposed common divisor p of tho rest. Thoe not-
wholly-real term of the series would in this case have at least
the phase angle 277/p and would then read

€ o3P
WG € .

This obviously produces a finite departure of | f(z)| from
| f(z,) |, though, with ¢, and p fairly largo, tho departure might
be fairly small; the rest must be taken care of by passing to the
limit N = oo in (6-10) or (6-12).]

Let us now return to our essential results (6-6), (6-7) andd (6-9).
In rewriting them we drop for brevity the index in z,, bocause
no other than this one real positive value of z coneerns us, and
we also understand z in (6-3) to mean this value. Ho, colloeting
our results, we have

F(2) = @25+ Wy 2+ o oo+ W H 1oy (6-13)
g'(z) = — E«Z}-+NJ;:’(%.). =0, (6-1-4)
5P = zE-1 f(z)zv‘:/.{%gﬁ(z)}, (6-16)

log P = — (Il + 1) log z++ N log f(z) — 4 log (2mg”(2)).
(6-17)

ER Y
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fven the last term in the last formula will turn out to be negli-
gible, and we might drop it forthwith on the ground that it is
only of the order of log N. But to be on the safe side we still keep
it by for a while.

From (5:3) we now obtain the mean occupation numbers

- 8logZ'P a)zsz 13

Qp = Wy~

The first term is zero by (6-14). (But, of course, we were obliged
to take the implicit dependence of z on w; into account.) As
regards the last term, let us introduce the average energy

E |
= ="U, (6-19)

which does not change in the limiting process IV -—co, H— co.
Then (6-15) reads

” fll flz)

z) = — 6-20

o) = (g +L L (6-20)

Hence the last term in (6-18) is also constant in the limiting

process and we have (putting all the w, = 1, according to plan)
- 26 ‘

@ = Nz€1+z€z+...—|-z€z' (621)

The equation (6-14), which determines z, can be written, with
(6-19) and putting all tl%ae w’sequal to 1,

t] — 61261-}-622362*{—' “se +61261+ e
26426+ ... 26+ ...
The last two equations, if we put

logz = —pu, (6-23)
are an identical replica of the fundamental relations (2-6), on
which we built the thermodynamical theory from that point
onwards. Only, the mean values @, now have replaced the
most probable values. Our f(z) plays the part of the ‘sum-over-
states’. So, we may now claim that we have founded the theory
in a second, independent manner. Let us see what we now get

. (6-22)
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for the fluctuation of &;, from (5-4). Using (6-18) we have to
- form

-8 w Nzee 1 0
7 \2 "= 4 ”
(a;) Wy 5 G, {C!)zg( )Bw @) ~ 330 Zloggr (z)}

Here the first term gives nothing, because ¢'(z) = 0 (6-14) must
be understood to hold identically in w;. The last term can be
dropped, because, from (6-20), it has ‘no order’ in N—and
terms of the order IV will survive. In differentiating the middle
term, we must again take into account that z depends on w,
(though, as a rule, not much, and, from (6-14) and (6-19), in a
way that does not depend on V). We get

g o0z __zezf’(z) gza 1) 2%
ai— (@) = ol f() Wil { wz( F&T + f<z>) f(z)z}'

Putting all the w’s equal to 1 and using (6-14), (6-19) and (6-21)
we easily obtain
dlogz a,

a3 — (az)z“"‘az[l'F(ez U) 50, N

Since the square bracket certainly does not involve the order NV,
the mean square deviation is, if not precisely ‘normal’, cer-
tainly ‘ of normal order’, i.e. of the order of @;. Thus the relative
fluctuation approaches to zero, as N and all the @, approach to
infinity. The distribution becomes infinitely sharp. Mean
values, most probable values, any values that occur with non-
vanishing probability—all become the same thing.

But it is possible and quite illuminating (though not very
important) to evaluate the middle term in (6-24) exactly. It
turns out to be always negative, so that the fluctuations are
infra-normal. For that purpose it is slightly more convenient
to liquidate the z notation and to replace it by the - or T
notation, according to (6-23):

(6-24)

logz = — ~—-————1
dlogz op 1 dlog 7
Thus Dw, aw,( T 2w, )
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This dependence of x on one w;is to be calculated from (6-14),
which can be written

N
U _ Za)pe-/‘el :
- The understanding is that U = const. Thus
dlogU = dsy %o = 0,
81 o

where we put for brevity
Sy = el w, eHer,
Now (varying only x and one w,),
ds; = e radw, —s,du, dsy= e~radw,—s, du.
e Ferdw,;— .szcl,u__e“ﬂezdm — 8, du _
§y So

Hence 0.

Hrom this we easily obtain
ou €,—8/8g € HE
By 8y[89—51[8] S

Considering the meaning of the symbols, that reads*

op. _ e—U &

ow, s T~—"N
(e,—U)?
And so we get from (6-24)

We should call the dispersion ‘normal’ if the middle term were
zero; and so it is for those levels which amount to the mean
energy (¢; = U). In all other cases the dispersion is infra-normal.t

One of the fascinating features of statistical thermodynamics
is that quantities and functions, introduced primarily as mathe-

* The wavy line ——~— indicates the mean value among the
members of the assembly, as contemplated towards the end of
Chapter v.

T Iremind you of the case of a single Fermi oscillator, where the
fluctuation of @, proved to be strictly zero.
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matical devices, almost invariably acquire a fundamental
physical meaning. We have had examples in the Lagrangian
parameter x, the maximum 2z, the sum-over-states or partition
function. What is the meaning of ZP? We take it from (6-17),
drop the last term on account of its smallness, and use the
notation (6-19) as well as (6-23), remembering that u = 1/kT.
Then 1 U .

—lvlogZP = 70—1—,+10gf(z)

U 1 U 1
=7;:f'ﬁ+7;:(3“‘_“f) =75
Thus —Iilog 2P =8, (6-25)

N

the entropy of the single system. This is quite interesting in
itself, but becomes more remarkable if we return for a moment
to Chapter 1r and compute the logarithm of the maximum P
(which we could have done already there, but we did not).
From (2-2) and Stirling’s formula

log P = N (log N —1)— Zay(loga;—1)
l
= Nlog N — X a;loga,.
l

Using the ‘maximum’ a;’s
l

eTHE;
=N 5oy
z
and thus log a; = log N — ue; —log X e,
. l

we obtain
log Prax. = Nlog N — Za;log N +u Z e+ Za log 2 e—He
| l
= ul] + Nlog 2 e~re,

E 1(, U
and further = W+N 7 (S --—T—) .
Multiply by /N and remember that E/N = U:
k U U
Wlogpmax_=—T“+S““—T"= S. (6'26)
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Comparing this with (6-25), we find that we can calculate the
entropy either as log X P, or as 1og Pmax.; it makes no difference.
What happens is that the number of F’s that are quite com-
parable with Ppax is very large, yet vanishingly small in com-
parison with Pnax, itself. Hence in the logarithms the distinction
is negligible. This is what H. A. Lorentz called in a famous
mémoire: ‘L’insensibilité des fonctions thermodynamiques.’

There are other statistical analogues of the entropy, but not
of such general applicability as this. This, derived from the
sum-over-states, is applicable to any system, whether large or
small, to a single oscillator as well as to a gas, a solid or a, system
of several phases.

The one now to be indicated (due also to W. GrlbbS) pre-
supposes a system showing only small energy fluctuation in a
heat-bath, as we know to be the case with any big system.

Only the levels very near to the average energy U are occupied.
But look at the sum-over-states

e—:“‘el“l—e_fu‘ez*l-...+6—'Iu€l+-... ’ N

Since the ¢’s are in arithmetical order, the exponentials decrease
permanently. Now, they are a measure of occupation frequency !
At first sight we are astonished how that sharp maximum
should come about—why any maximum at all? |

The cause lies in the way in which ¢;increases with I, namely,
slower and slower as you proceed in the series, and indeed
with “tremendously increasing slowness’. In other words, the
number of levels per unity increase of ¢;, the level density,
increases enormously. The maximum comes about as a com-
promige between the increasing level density and the decreasing
exponential.

Let us look at it in this way: we may regard ¢; as a function
of its subscript, e(l); and thus also ! as a function of e, l(e)—in
words: the number of levels up to the limit e. Now take

i),
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where U is the average energy (from which actually only small
deviations occur at all). Then
klogi(U)

is the entropy.

This is not difficult to grasp; but, in the first instance, we
shall come upon yet another ‘entropy definition’.

Let us choose some convenient small step de¢ and bundle
together all the levels within such a de step, say 4l. Then the
sum-over-states can be written

Ze—redl,

€ being, of course, the value within that region Al. Then we may

also write :
2e—He A——-—-l de.
Ae

The region of maximum dccupation—-——and that is the region
€~ U—is determined by the maximum of the ‘integrand’, or,
if you like, of its logarithm

This shows, of course, that

ary
S = (klogz—é)ezv
plays the role of entropy.
The reason why we may take I(U) itself instead of

a - dio)
Ade al
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is that I(U) increases practically always as some enormously

high power of U, UU) = CU" (say),
dl _ n—1
37 = nCUn—1,

Togl = logC+nlog U,

log% = log (nC)+ (n—1)log U.

You see, it makes practically no difference.

I should like to indicate the intuitive reason for the exponential
dependence of the occupation frequency on e, in heat-bath
conditions.

Let €, ¢y, ..., €;, etc., be the energy levels of the system and
b1, bs, ..., b, ete., be the levels of the bath. Then the sum of the
total energy (E) of the system plus that of the bath is a constant,
and the levels of the whole are ¢;+b,.

Since the total energy is constant, there is actually only an
exchange between degenerate levels, i.e.

€;+b; = (nearly) constant = E.

(‘Nearly’ on account of the coupling energy!) Now all these
levels €,+b; for all combinations (I,k) have, of course, equal
occupation frequency, that is, simply the assumption of equal
a priori probability for any single level. The reason for the
decreasing occupation frequency of the higher e, is that the
number of bath levels b, = B—e,

decreases exponentially with decreasing K —¢;, the energy left
to the bath. That is, indeed, pretty clear if this number is
something like

C(E —e)r = OEn( —%)nwOE’"e*mz/E.

(n = very large)

This does not pretend to be a strict derivation (we have given
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that before), bt it shows the git of the thing: the more o the
total enengy () the systemm assuntes for iself (), the lss (v
B-g) i3 lft to the bath, And this reduces the mumber of
available hath-Jevels—even in the case of an infinite heat-bath,
or vather, poeciely i this case~hy an exponential factor, the
very oe Which we have come to know ag the comesponding
term in the sum-over-states, that 15 to say, as the relative
probabilty of fnding our systenn in a stabe ¢, under heat-bath
conditions,

¢



CEAPTER VII

THE n-PARTICLE PROBLEM -

So from now on we need no longer distinguish (for the purpose
of dealing with a Gibbs ensemble, N—o0) between the two
methods, that of the ‘most probable values’ and that of ‘mean
values’. For they have produced exactly the same result. In
fact, since this result, once known, is quite generally applicable
to every system, we need never recur to either of the methods!
Looking back, we might indeed have scrapped the first alto-
gether, which is, so to speak, legalized only by the second. The
only reason why I did not scrap the first was, that its mathe-
matics—consisting really only of two or three lines—is so much
more easily surveyable; and that is worth a lot in a domain
which is conceptionally so enormously difficult.

But though I have just said that we shall never more have to
return to either method, the mathematical idea of Darwin-
Fowler, which overcomes the difficulty of an accessory condition
by forming a residue, is such a sublimely excellent device
that we shall indeed take to it again, namely, for the purpose of
evaluating the sum-over-states in cases which otherwise would
be clumsy to handle. But I beg you to keep those two things
apart in your mind: the general proof is done with. When we use
complex integration in what follows, it is by way not of giving
an example of the general method, but of using a similar mathe-
matical device or tool for evaluating certain sums-over-states.
It is essential to emphasize this point. For when, having first
explained a general method, one proceeds to use very much the
same mathematical device in dealing with particular examples,
the inference is almost bound to be that he has applied the
general method to the special example!

Now for the n-particle problem (simplest application: an
ideal gas).
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According to modern views, a gas must not be regarded as
consisting of n identical systems in loose-energy contact, since
the energy levels of the gas are not the sums of the energy levels
of its » constituents in all combinations. They are numerically
equal to them, certainly.* But any two gas levels which differ
only by an exchange of roles between two (or more) of the n
identical atoms or molecules, have to be regarded as one and
the same level of the gas. Brief reflexion will show that this
produces an entirely different sum-over-states for the gas as
a whole.

The underlying physical idea is that the particles are energy
quanta without individuality; that Democritos of Abdera, not
Max Planck, was the first quantum physicist. For the moment,
we defer discussion of the physical meaning and of the experi-
mental facts which have forced this entirely new attitude upon
us. We first devote ourselves to determine, from our general
theory, the new thermodynamics of the n-particle system.
Denoting by &y, O,

“n ey as’ cosny

the levels of one particle, a definite level (not a class of levels!)
¢, of the n-particle system (we will call it ‘the gas’, for short) is
indicated by the numbers

nl’ nz, na, covy ns, vensy
of particles on level ¢, a,, ... respectively; and that level ¢, is
€3= N30 +Ngy+ ...+ ... = Zn,0,.

(Not to be confused with a previous scheme—the a,’s and the
. ¢;8—to which it bears only a formal resemblance.)
Hence the sum-over-states is (u = 1/&T)
Z = Ze prEIna,, (7-1)
(ns)

The 2 means: over all admissible sets of numbers n,. This
(1)
expression embraces several different physical cases: the theory

* In the case of no interaction between the particles. We en-
visage only this caso in these lectures.
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of black-body radiation; the theory of ordinary Bose-Einstein
gases, and thereby the theory of the so-called chemical constant;
the theory of a Fermi-Dirac gas, of which the most important
application is to the electrons in metals. We shall evaluate Z
in all these cases. From logZ we then deduce the thermo-
dynamics. Another point of interest is the average value of n,.
Let us note, for future use, that it is always

— 13dlog Z
,, e = T, 72)
as may be verified at a glance. But, mind you, if the system is
finite, the fluctuations of these n, are not entirely negligible.
The case is quite different from the fluctuations of the g, in a
virtual assembly.
The different cases in the evaluation of Z arise thus:

(i) The values admitted for every n, may be

(@) n,=0,1,2,3,4, ... (Bose-Einstein gas).

(b) n,=0,1 (Fermi-Dirac gas; Pauli’s exclusion prin-

ciple). '
(i) There may or may not be the condition that the total number
of particles is constant,

Yn, = n. (7-3)

8

Only one case is known, though, where this condition is not
imposed; it is a Bose-Einstein case, viz. black-body radia-

tion (photons). It is, of course, the simplest one.
Put in any case 2y = €H%; (7-4)
thus Z = (Z)z;}l 2B, . 2k, (7-5)

Ny
to be summed over all admissible sets of numbers n,.

Paying attention, at first, only to the restrictions (i) (a) or
(1) (b) respectively, we easily obtain

(i) (@) Z=T

jp— (Bose-Einstein),

(b) Z = 1I(1+2,) (Fermi-Dirac).
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Tt is convenient to combine these formulae thus:
Z =11 (1F=z,)¥, (7-6)
8

where the double signs are coupled and the upper sign refers
throughout to the Bose-Einstein case.

We have still disregarded (7-3). As I have already said, this
is the correct attitude only in one particular case (heat radia-
tion; upper sign). We might follow up this simplest case first.
Tt is suggestive, but it would not be economical to do so.

When (7-3) is imposed, (7-6) is not yet the final result. For a
glance at the original form (7-5) indicates that we have to select
from (7-6) only the terms homogeneous of order = in all the z,.
That is most conveniently done by the method of the residue.

Put f(&) = TI (1 F&=,)FL. (7-7)

Then the correct Z is rigorously represented by the following

int 1: :
e R L (oL 3 (7-8)

conducted around the origin in the complex { plane in such a
way that no other singularity of the integrand, except { = 0, is
embraced.

Tt is not very difficult to show that in both cases the integrand
on the real positive axis starts at §{ = 0 from large positive values,
while its logarithmic derivative starts from large negative values
and, increasing continually, becomes eventually positive. Hence
the integrand has one and only one minimum on the way and
the method of steepest descent can be tried.

Putting, on the real positive axis,

£ (8) = &2 @, (7-9)

we obtain the following two relations:

g'() = -—""g = +J}’(%) —o0, (7-10)
o mtl F7O FO? |
') =" RO (7-11)
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the first of which determines a real positive root { (we omit the
embellishment of a subscript zero), while the second indicates
the value of g”({) at that point. And we get

— T 1 . F

log Z = — (n-+1)log {+log f(§) — } log (2mg"(£)),  (7-13)

pending the proof that ¢”({) is very large also in the present case.
Though in the present case we cannot strictly pass to the

limit n— co, we may virtually do so. To begin with, we safely

replace in (7-10) n+1 by n and obtain, with (7-7) and (7-9),

1 1
zeﬂa-’—{—l

We shall presently replace this sum by an integral, whereby it
- will turn out to be proportional to the volume V, by virtue of the
fact that, for fairly large n, the number of levels a, between any
given narrow energy limits is proportional to V. Hence the
characteristic root { only depends on the volume density ot
particles n/V. That is not rigorously true for any finite n, but
we just declare that we wish to investigate only the limiting
behaviour of sufficiently large ‘gas bodies’. { being thus fixed,
(7-11) shows that g"({) is actually arbitrarily large, if n is. Hence
not only the procedure that led to (7-12) and (7-13) is justified,
but also the neglect of the last term in (7-13), because it is only
of the order of log n; thus

logZ = —nlog{+logf({) = —nloglF Zlog (1 F e—res). (7-15)

(To refuse the virtual transition to the limit n — co would lead
us to something we are not interested in for the moment,
namely, gas bodies so small that their thermodynamical be-
haviour depends on their size and shape. The peculiar features
that would result would be termed ‘surface phenomena’ by
the experimentalist.) The parameter § in (7-15) is determined
by (7-10), which is more easily surveyed in the form. (7-14). On
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the other hand, we can now see that it was a time-saving device,
not to treat separately the case in which the total number of
particles is not prescribed but is, so to speak, allowed to adjust
itself. In this case Z was given directly by (7-6), with (7-4). It
is easily seen that this case is formally embraced by our present
value of log Z, viz. by (7-15), if we just put { = 1 (instead of
letting it be determined by (7-14); yet the latter equation is not
entirely meaningless even now; it gives us the changing number
n of particles actually present).

The partial derivative of (7-15) with respect to { vanishes,
according to (7-10). Hence (though ¢, by (7-10), does depend on

,) we get from (7-2)
nszw_l_alogzw 1 , (7-16)
M O, 1 -
- eros 1 1
4
which renders the equation (7-14) very perspicuous.
From the meaning of the last equation the average energy U

of our gas body is obviously

U = 2-1--—-5‘5‘-3-—. (7-17)
§ Cemas ]
g

I beg the reader to verify for himself that this could also have
been obtained from (7-15) by the general relation

o ,0log Z
a7 = "1

With one thrilling exception (the case of Bose-Einstein con-
densation, which we shall discuss in detail later) the sums in
(7-14), (7-15) and (7:17) and similar ones can be evaluated as
integrals, without our having to bother about the exact values
of the levels «,; we are concerned only with their density per
unit of energy increase.

We restrict ourselves to the case that a, represents only
translatory energy. (At the low temperatures where the ‘new’
statistics differ from the ‘old’, every gas has become ‘mon-

U =122 (7-18)
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atomic’, vibrations and molecular rotations having died down
entirely. So there would be no point in including them.)

The number of states (of the single particle) pertaining to a
‘physically infinitesimal’ element of phase-space is

dxdydz dp, dp,dp,
h3 )

Integrating with respect to the first three variables over the
volume V and also over the ‘4 directions’ of the momentum,

we have

47V
PP, (7-19)

where p is the absolute value of the momentum. If the particles
are endowed with spin, this number has still to be multiplied
by a small integer, 2 or 3, according to the different orientations
of the spin that are possible (2 for spin 4 and also for spin 1,
when the rest-mass vanishes (photon); 3 for spin 1, when the
rest-mass does not vanish (meson)). '

(7-19) is the distribution of single-particle states ‘on the
momentum line’ p. What we need for evaluating our sums is
the distribution on the energy line ‘cc’. The general relation
between o and p for a free particle is, of course,

o = C./(m?c?+ p?). (7-20)

It would embrace all cases. But the square root makes it in-
convenient. It can be avoided, since in point of fact only the
two limiting cases actually arise, viz.

either (i) m =0 (photons),

or (ii) p<Lmec for all occupied levels. (This holds for all
particles other than photons at the temperatures
that actually have to be considered.)

In the first case we have

@ =cp (photons). (7-21)
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In the second case, in excellent approximation,

« = mo? + 22 (7-22)
2m.’

and the rest energy mc? can be dropped, because it is constant
and the zero point of energy is irrelevant.

The number (7-19) could have been obtained, by an entirely
equivalent procedure, from wave-mechanics. From an asymp-
totic formula due to H. Weyl the number of proper vibrations
with wave-length > A is for any wave-motion confined to a
volume ¥V by any linear boundary conditions,
- multiplied by a small integer 1, 2, or 3, depending on the tensor
character of the waves, which determines the different polariza-
tions a plane wave can exhibit. ‘Asymptotic’ means that the
expression becomes exact in the limit V/A3—+ 0. With the
universal De Broglie relation between momentum and wave-

length %
P=3
we get from (7-23) %{-ﬁp",

and hence (7-19) for the number between p and p --dp.

The two equivalent ways of looking at (7-19), viz. cither as
counting the number of quantum states of a particle, or as
counting the number of wave-mechanical proper vibrations
of the enclosure, interest us for this reason. The second
attitude makes us think of the ‘n, particles present in state c,’
ag of a proper vibration (or a ‘hohlraum’ oscillator to use a
customary expression) in its n,th quantum level. (This attitude
really corresponds to so-called second quantization or field
quantization.) n, becomes a quantum number and the stipula-
tion that the system of quantum numbery

nl, nz, nB’ sy 7?'8, “e ey
SST 4
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determines only one state of the gas, not a class of

7!
Cmlnglongl

states, ceases to be a strange new adoption, and comes into line
with the ordinary view about quantum states and their statis-
tical weight (viz. equal for any two of them).

It is the first, the particle attitude, that has suggested the
term ‘new statistics’ which is frequently used. And that is
why this idea of new statistics did not, originally, arise in con-
nexion with heat radiation, because here the wave point of view
was the historical one, the classical one—mnobody thought of any
other at the outset. The wave picture was considered to be (and
historically was) the classical description. The quantization of
the waves therefore duly appeared to be a ‘first’ quantization
and nobody thought of anything like ‘second quantization’.

Not until the idea of photons had gained considerable ground
did Boge (about 1924) point out that we could, alternatively to
the ‘hohlraum’ oscillator statistics, speak of photon statistics,
but then we had to make it ‘Bose statistics’. Very soon after,
Einstein applied the same to the particles of an ideal gas.
And thereupon I pointed out that we could also in this case
speak of ordinary statistics, applied to the wave-mechanical
proper vibrations which correspond to the motion of the par-
ticles of the gas.

The wave point of view in both cases, or at least in all Bose
cases, raises another interesting question. Since in the Bose
case we seem to be faced, mathematically, with a simple oscil-
lator of the Planck type, of which the 7, is the quantum number,
we may ask whether we ought not to adopt for =, half-odd

Integers 3 5
g %: 2y 2y sery n_l"%’ AERT)

rather than integers. One must, I think, call that an open
dilemma.. From the point of view of analogy one would very
much prefer to do so. Tor, the ‘zero-point energy’ }hv of a
Planck oscillator is not only borne out by direct observation
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in the case of crystal lattices, it is also so intimately linked
up with the Heisenberg uncertainty relation that one hates
to dispense with it. On the other hand, if we adopt it
straightaway, we get into serious trouble, especially on con-
templating changes of the volume (e.g. adiabatic compression
of a given volume of black-body radiation), because in this
process the (infinite) zero-point energy seems to change by
infinite amounts! So we do not adopt it, and we continue to
take for the n, the integers, beginning with 0.

After this digression let us go back to our problem. We shall
not treat the photon case for the moment; it is too well known
and the reader will easily supplement it for himself. So we use
(together with (7-19)) (7-22), where we drop the irrelevant
constant mc?. That gives

4;::’ p2dp, single-particle states p, p +dp,
2
o = ‘;2%; = kinetic energy of single particle.

Using this we transcribe the sums in (7-14), (7-15) and (7-16)
into integrals; whereby we immediately 1ntroduce throughout
the dimensionless integration variable

2= [ g = DINEmED),

so that the integrals are reduced to functions of the one para-
meter {; we obtain

(v's] 2
n = f’?/ (2mET): J -I-'f-i?f—— (7-24)
e T 1
At
V=1l log Z=—nklog {F—— 4:7TV]G (2ka)§f log (1 F {e—**) x?dx,
(7-25)
4 .
U = 4”'V (um)& (kT 1"’ dz_. (7-26)
Ze‘*’z F1
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As ig seen by a glance, the first of these equations (which deter-
mines { as a function of (V/n) 1) expresses the fact that the
partial derivative of ¥ with respect to § vanishes.

Notice also that by partial integration of the integral con-

taining the logarithm the following alternative expression for
¥ can be obtained:

. lclogz—-—nk1og§+8”w“(2 IT)f 2y (.27

§ e“"a F1
From this (using the remark about 9y-/0f = 0) you easily confirm
(7-26) by forming oy
U=1T2 37 (7-28)
and you could just as easily calculate the pressure
oW
p=1T——+ 7 (7-29)

But you see at once from (7-24) and (7-25), first that £, and then,
therefore, that ¥ is only a function of V1'% (with » constant).
From this and the two preceding equations you easily infer

pV = 3U (7-30)
in both cases, and, by the way, also in the classical theory of an
ideal monatomic gas (for heat radiation p¥V = }U; that means
that p is comparatively much greater, because there U is the

total energy, while here it is only the kinetic energy). Another
general relation can now be read off (7-27), viz.

W —nklogt+2Y,
U

and since it equals S ~ 7>

nkTlogl =U—-TS+pV; (7-31)
that is to say, nkT log { is the thermodynamic potential. (Again
an instance of a mathematical auxiliary quantity acquiring
physical meaning! At the same time this confirms the fact
that our present considerations are not simply an application

of the physical method of Darwin and Fowler. For in the
latter method logz was —1/k7'.)
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EVALUATION OF THE FORMULAE.
LIMITING CASES

To determine the actual behaviour of such a degenerate gas

requires the numerical evaluatiod of the two definite integrals

for varying {. We indicate the general plan of this work.
First, from (7-24), viz.

¢ : <] 2
1 — dar(2mlk) ZT& x2dx , (8-1)
h3 7 | R
—er I 1
o &
" we get the functional relation between
Ym oana ¢ (8-2)

Then, from (7-26) (and (7-30)) we get
2 U _ pV _24m@mkpV ., fo 2Adx

ST~ nkT ~3 R me | T (8:3)
=e* Tl

0o &

The latter gives us the departure from the ordinary gas laws,

for it is just 1 for them. Indeed, if we divide (8-3) by (8-1),

member by member, P b o

2 U _pV _2J0 ¢ .
3nkT  nkl 3 [ xidr ° (8-4)

Now for ¢ very small we get for the ratio of the two integrals

fcoe"“’z xtda 3
s =5 (8-5)
J e~ x2dx

0

So ¢ very small gives (in both cases) the classical behaviour.
(¢ is also called the parameter of degeneration.) Both integrals
are then very small, and that means, from (8-1),

—«ETK very large.
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That is: high temperature, low density. This is at once (a) satis-
factory, (b) disappointing, (¢) astonishing.

(@) It is satisfactory because we have to find the classical
behaviour for high temperatyre and low density (at least in the
Bose case) in order not to contradict old, well-established
expemmental evidence.

(b) The densities are so high and the temperatures so low—
those required to exhibit a noticeable departure—that the
van der Waals corrections are bound to coalesce with the
possible effects of degeneration, and there is little prospect of
ever being able to separate the two kinds of effect.

(¢) The astonishing thing is that the new statistics’ which

replaces just by 1 the factor ;)

nll'nzl cemgle
(very large in ‘the old one’, indeed its outstanding feature)
should ever give the same behawour as the old ome (if at
all, one might expect this rather at 7'->0, where the factor
would approach to 1 in the old theory!).

The solution of this paradox is, that this factor when worked
out, applying classical statistics to the quantum levels of the
single particles, is not just 1 but »!. And that ‘does no harm’,
because it is constant (the harm it does work after all we shall
see presently). In other words, the quantum cells are, at high
temperatures and with low density, so numerous, that on the
average, even in the ‘most populated region’, only every
10,000th or 100,000th is occupied at all. The n, are either zero
(most of them) or 1, hardly ever 2. And that is why it makes no
difference whether the latter possibility is either excluded
(Fermi-Dirac) or endowed with a greater statistical weight
(Bose-Einstein)—it is negligible anyhow.

The above contention about the occupation numbers is
made good by the following considerations. We recall the
expression for the average of the occupation number n, (7:16)

_ 1
ny = g (8-6)

— er% I 1

4
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Now for £ <1, since e#% > 1, we can omit the F1 and have
n, = fe—re L&,
showing at once that n,<¢1 when { is, and that proves the con-
tention. Moreover, since in the ‘really most populated’ region,

which is pa, = o /kT~1, the exponential is still of the order
of unity (not smaller), we can say that

P14 (8-7)
gives the true order of magnitude also in the truly interesting
region. It is worth while to inquire just how smallitis! (I main-

tained above that it was about 1/10,000th or 1/100,000th.)
That we easily get from (8-1)

value of

the integral
4 (2mk): V T
N7 R ¥
1 h3 o . &5
1 QrmkT\¢V

This is expected to be a large number. Let us compute it for
normal conditions (0° C. and 1 atm.) and for helium, the lightest
monatomic gas, taking for convenience 1 mol.:

log2r - =0-79818 logh = 0-82113—-27

log mg = (0-22337 — 24 logh?% = 0-64226 —53

log 4 = 0-60206

log k& = (014003 — 16 logV = 4-35054

log 273-16 = 2-43642 logn = 23-77973
0-20006 — 36 0-57081 —20
064226 — 53 0-83670 -+ 24
0-55780+16 5-40751
0-27890+ 8 Number 255,570.
0-83670 + 24

N.B. myg = 16725 x 1024
k= 1-3805x 10—1¢
h =6-6242 x 1027} c.g.s.°C.
V =2-2415x 104
n = 6-0228 x 1023 |
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Hence, in these conditions

é = 255,570 (pure number). (8:9)

The occupation would remain extremely scarce even under
strong compression and considerably lower temperature (see
(8-7) and (8-8)).* But at the same time we can estimate that if a
compression to about 1/100th the volume and a refrigeration to
about 1/100th the temperature (thus to 2-3°K.) could be per-
formed withoutliquefaction,that would givea factor 1/100,000th,
and we would just reach the region where { ceases to be ‘very
small’. So the region of noticeable gas degeneration is by no
means outside the reach of experiment, only (as I said) its effects
are inextricably mixed up with the ‘van der Waals corrections’.
The entropy constant. But eqn. (8:8) has also a direct and
important application to experiment, viz. for computing the
so-called entropy constant or chemical constant, or, to put it
more concretely, the vapour-pressure formula of an ideal gas.
And that it gives it correctly (while the classical theory gives
pure nonsense) is the true justification of the new point of view.
Remember that we had found

nkT log { = thermodynamic potential = U —-7'S+pV, (8:10)
from which the entropy
S = nklog (%)_’_g_-%}ﬂf =nlclogé+~g~nk. (8-11)

(Thus in (8-9) we have virtually computed the entropy; that is
why I took the trouble to compute it exactly instead of merely
estimating it.) But we are now interested in the general con-
nexion, and using (8-8) we get

2mmk
%2
Please note in the first place that this expression is sound, as

' &
S = nklog (—T—;) + 3nklog T'+nklog ( ) +E$nk. (8-12)

* Notice that the relative fluctuation of these small occupation
numbers n,~ { is extremely great, viz. 1/,/{~ 500 or 50,000 9%,.
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regards the dependence on V and »; if you increase n and ¥V
proportionally, S takes up the same factor. That may seem
trivial, but that is just its first and supreme merit—it is just the
point in which the classical point of view pitiably fails, as we
shall see. i

After having taken due notice of this soundness, we now refer
to 1 gram-molecule, so that nk = R, the gas constant. In the
argument of the first log we supply a 1/k (correcting for it in the
constant) and then use

v_v_T
; nk R~ p’
because it is more usual to speak of the pressure than of the
volume in this connexion (viz.in the case of the saturated vapour,
to which we shall immediately proceed). Then

27rm)t I#
S = —Rlogp+3iRlog T+Rlog~(-f—”}:i}-—i +ER

If we now measure R in cal./°C. and equate this S to the actual
heat supply per gram-molecule on evaporation 4, (which must
be taken from experiment),* divided by 7', thus

_ 4y

=7
we get the famous Sackur-Tetrode vapour-pressure formula,
valid for temperatures low enough to allow us to neglect the
entropy of the condensed state. To higher temperatures, where
this will no longer be so, since the gas will cease to behave
‘monatomically’ by rotations and oscillations coming in, we
proceed by following up either theoretically or experimentally
the specific heats of both the gas and the condensed state, which
inform us of all further changes of the respective entropies and
of the heat of evaporation. All that is then classical thermo-
dynamiecs, and it is well known how from vapour pressures we

(8-18)

* The index p is a reminder that ‘p is constant’ on evaporation.
The heat supply includes that part which makes up for the work
PV (= RT') done on evaporation,
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can predict all chemical equilibria which include a gaseous
phase. The salient point was to find the value of the constant for
every gas—depending only on the mass of the particle: for this
makes it possible to predict such equilibria from pure caloric or
energetic measurements (without having to set up even one
equilibrium experimentally).

The heat of evaporation at some temperature must, of course,
be procured by experiment, but that too is only the measurement
of an energy difference, which does not necessarily require the
actual performance of a reversible transition. One can obtain
that energy difference at any temperature and then compute
it for any other from calorimetric measurements; one can
obtain it by any means, including, for example, explosions
" within a bomb in a calorimeter; one may even estimate it
theoretically from any knowledge one may have of the forces
which keep the atoms in the crystal (forming the condensed)
together.

But one must beware of one suggestive error. One is tempted
tosay: ‘Well, at those low temperatures which we are speaking
of, the energy of the solid is practically zero, the vapour behaves
as an ideal (non-degenerate) monatomic gas, so its energy is
$RT and the heat of evaporation is thus $R7 +R7T = §RT.

This would be a mistake, suggested by current terminology,
though it would hardly be fair to put the blame upon it. What
happens is this. In saying the energy of the condensed is zero*
and in saying the energy of the vapour is $R7, we are not using
the same zero level of energy. We give no credit to the particles
in the gas for having extricated themselves from each other’s
spheres of attraction. It is this part of the heat of evaporation
which, of course, cannot possibly be indicated by any general
theory. -

The failure of the classical theory. Gibbs’s paradox. Let us
glance at corresponding classical considerations, which on super-

* This, by the way, would in itself not be quite correct, because
there is a considerable zero-point vibration in the crystal.
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ficial inspection seem to give almost the same results. We have
merely to repeat the considerations of Chapter 1v on the free
mags-point. There we only aimed at the elementary classical
results for ideal gases, we took the phase volume itself as a
measure of the number of quantum states and we did not at
all evaluate the value of the additive constant in log Z. Sup-
plying now the factor 2-23 we get for the sum-over-states of the
single mass- pomt

Zumgio = 75 (@mAT)! f f [ememrseragayag

A

= ﬁ (27Tm70T)%, («/77'

k 2rml\t
Waingle = klog Zsingle = klog V—l—%— log T'+ klog (w) .

72

(8-14)
Hence for the n mass-points forming the gas (according to the
principles laid down there, sound in themselves)

2mrmk\ ¥

h? )
Now, quite in general Y= S§—-U/T, and since in our case
U = $nkT, we get

Sgas = nklog V—l—%iclog T + nklog (

Yeas = nklog V—l—%&]ﬁlog T +nklog ( (8-15)

2irmk

h2
Let me first point out an objection, that must not be raised, viz.
that this goes to —co for 7'—0, instead of going to 0. This
objection would be as little justified as in the case of (8-12).
The (8:16) does not claim to be right at very low temperature,
because the mere counting of quantum levels is then no longer
sufficient. On the contrary, we made sure that the present
‘Boltzmannian’ point of view must, just as the other, lead
to 8 =0 for T -0, when all the particles relapse into their
lowest state. Indeed !

) +3nk. (3-16)

(8-17)
7 ! ..omg !l ‘

then goes to 1, and its logarithm to zero.
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The true blemish on (8-16), which renders it absolutely un-
usable in spite of its great similarity to (8:12), is that the
dependence on n and ¥V is unsound. The constant is not doubled
when n and ¥V are doubled. But it is doubled, when » alone is
doubled. If you try to use it, as before, to determine the vapour-
pressure formula, you get the bewildering experience, not
perhaps that you get the vapour pressure wrong, but you do
not get it at all! Indeed, call A the heat of evaporation per
particle and put (8-16) equal to

nAx

‘T‘ ’
then you can cancel n throughout and what is then determined
(given the temperature) is not the vapour pressure, but the
vapour volume, the absolute volume of the vapour, independent
of the number n of particles it contains. Given this ‘correct’
volume any amount of liquid could evaporate into it, or vice
versa, without disturbing the equilibrium !

Comparing (8-12) and (8:16) closely we find that the super-
abundant additive term in the latter reads

nklogn —nk = kn(logn—1) = klogn!. (8-18)

That is clearly & times the logarithm of the value the ‘per-
mutation’ (8-17) takes when all the n, are either zero or 1. That
shows that the ‘new statistics’ avoid or amend the fault of the
old indeed by their essential step, viz. ‘not counting permuta-
tions’ and therefore taking that factor always = 1. (It was
mentioned above, p. 54, that this n! did no harm in the equation
of state, etc., but that the harm it did after all would presently
appear.)

But there are a few more quite interesting connexions. The
superabundant addendus (8-18) has the consequence that if you
join, say, two gramme-molecules of gas together, without doing
anything else, the entropy is not doubled,

but there is (as may easily be verified) an
additional increase of 2R log 2

1 mol. | 1 mol.
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Now, this is very interesting. For that is exactly the increase
of entropy which arises when you join two gramme-molecules
of two different, but not chemically reacting, gases in the same
way, take out the diapbhragm separating them—and wait.
For then diffusion sets in and we know that eventually the
increase of entropy for each of the gases is the same as if it had
been allowed to occupy double the volume by itself.

It was a famous paradox pointed out for the first time by
W. Gibbs, that the same increase of entropy must not be taken
into account, when the two molecules are of the same gas,
although (according to naive gas-theoretical views) diffusion
takes place then too, but unnoticeably to us, because all the
particles are alike. The modern view solves this paradox by
declaring that in the second case there is no real diffusion, be-
cause exchange between like particles is not a real event—if it
were, we should have to take account of it statistically. It
has always been believed that Gibbs’s paradox embodied
profound thought. That it was intimately linked up with some-
thing so important and entirely new could hardly be foreseen.

After a railway accident, or a fire, or a similar disaster, the
authorities are always anxious to answer the question: How
could it have happened?

How could it have happened that even with a wrong gas model
we arrived at the non-additive result (8:16) for the entropy?
It will be remembered that in our quite general development of
the theory we took the most anxious precautions that the log
of the sum-over-states and thereby all thermodynamic functions
were strictly additive. Even this very formula with which the
disaster happened was deduced from log Zgngle by just multi-
plying it by n. How could it then not be proportional to n?

Well, look at it—it is, of course, proportional to n, but with
the volume constant. What happens now if, say, we double the
volume as well? We inadvertently change the allowed quantum
states of the single particle, for we double their density all along the
energy line. Butin our general considerations, by which we proved
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that when two systems 4 and B (with quantum levels «a,, and
Pr) are joined together, their thermodynamic functions are
additive, we had tacitly assumed that the «,, and g, are not
changed by joining the two and that therefore the combined
system has the quantum levels

€= O‘m""ﬂk'

That explaing the failure. It is true that also in the new theory
this peculiar change of the single-particle levels (on putting two
bodies of the same gas together) subsists. But here the single
levels play only the role of an auxiliary conception, a con-
venient means of indicating the gas levels. As regards the latter,
the requirement that the levels of the compound system should
be those resulting additively from the levels of the constituents
in all combinations is not rigorously fulfilled,* but obviously in
sufficient approximation to make all thermodynamic functions
additive.

Digression : Annihilation of matiter? This is perhaps the best
moment to speak of an interesting aspect of the relation (8-1)
which arises when we drop the condition X n, = const. in the

8

case of particles with non-vanishing rest-mass, allowing, as it

were, particles to be created or amnihilated in collisions, the

balance 4+ mc? going to or from the account of the kinetic energy.

One must in this case, of course, use the non-truncated expres-

sion (7-22) 0

o = mcz—{—»«z-?—w, (7-22)
2m

and it is easily seen that this just yields an additional factor

emo**T to 1/¢, both in (8:1) and in (8-2). If we did not drop the

condition for % n, the effect would be nil—an irrelevant change
8

* On joining up, the single-particle level schemes are super-
posed, as it were. All combinations of a set n,, ng, ..., N, ... with a

set ny, ng, ..., Ny, ... are, of course, levels of the combined system.
But there are others in addition, because after joining up, the
sums Xn, and Xn, are no longer required to be separately con-

stant, but only gheir sum.
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in the definition of ¢ (that is why we could delete mc? in the
preceding). But now we dodropit. Then{ = 1. (8-1) determines
no longer ¢, but »n, or n/V, the particle density. Moreover,
formally (8-1) is the same as before, but with e-m¢¥*T in place
of {. For all temperatures in question this is an extremely small
number, much smaller than the one indicated in (8-9), viz.
¢ = 1/255,670. We must therefore be prepared to find that at
ordinary temperature the dropping of the condition would
entail extreme rarefication. We get, in complete analogy with
(8-8),
. 2mrmkT\tV )
ameeT’ _ ( h"z"") 2. (8-19)
(If we take logarithms x nk, we get formally, in full analogy
with (8-12) and (8:13), the vapour-pressure formula of a sub-
stance with the enormous heat of evaporation nmc?, divided by
the mechanical equivalent of the calorie.) As an example, let
us use the case of helium under normal conditions, of which we
have procured accurate data before. The number per cm.3,
n/V, will obviously now be smaller* by the factor

255,570e—me?/273%, (8-20)
Y have worked out the exponential and find
1(—6-9343...x 107 - (8-21)

The other factor 255,570 must be neglected, since the exponent
in (8-21) is not computed to 9 decimal places. Within the
accuracy reached, it is even irrelevant whether we speak of the
density in gram-molecules per litre or in single particles per
universe, because that means only a factor of about 1010,

The result is typical of what one gets when any other
possibilities for the annihilation of matter, e.g. transition into
heat radiation are taken into account as well. Unless we want
to assume that these kinds of transition are impossible, we are
astonished that there is so much ponderable matter left in the
universe as there is. The only way out seems to be to assume
that the transition is a very slow process and that not very far

* Smaller than 6 x 102 per 22 litres.
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back the conditions of the universe were very different from
what they are now.
Digression on the unceriainty relation. Before we consider

‘the case of degeneration proper (i.e. {<1) let us consider from
another point of view the quantity on the right of (8:8)

1 (27mkT\}V
& h3 n
which, it will be remembered, is the form (8-1) takes for {<1.
A noticeable departure from classical behaviour will begin at
temperatures and volumes where the second member is no longer

a very large number, but becomes comparable with unity.
Still nearer to unity is, then, its third root which is

JCmmET) 4 V.
h n’

, (8-8)

(8-22)

it allows of a very simple interpretation. For since the average
value of the energy is certainly of the order

D3
2m 2T,

the average momentum square is of the order

P2 ~3mkT.

The square root of this is certainly an upper limit to the un-
certainty of momentum, or rather, in a way, it is precisely the
uncertainty about the momentum of a particle picked out at
random.* Hence from Heisenberg’s uncertainty relation a
lower limit of the uncertainty 4« in the location of the particle is

h
> e JBmET)"
Thus (8-22) is, as to order of magnitude, the ratio between the

4

* Whether this be granted or not, the statement about the upper

limit is undeniable. For if the uncertainty were greater, p* would

be greater, and that would mean that the temperature is higher
than it actually is.
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average distance between the particles 4%/ (V/n), and the maxi-
mum accuracy with which a particle can be located,

1 [V
=3 (8-23)
When this is no longer large, when it becomes of the order of 1,
one has, I think, to say that the particles become entirely
blurred, the particle aspect breaks down, and one is no longer
allowed to speak of a granulated structure of matter.

This remark is of much wider application, far beyond our
present subject-matter, and I dare say it is directly supported
by experiment. Wherever the particle aspect truly enters the
interpretation of an experiment (e.g. in Wilson chamber experi-
ments or in the counting of cosmic-ray particles) it is with cor-
puscles in extreme rarefication and of high speed. For, the actual
momentum always sets an upper limit to the uncertainty of
momentum, and thus sets a limit to the accuracy of location,
and to the crowding of similar particles, if the crowding is not
to prevent altogether their being recognizable as separate
particles. :

But what about the crowding of particles in liguids and
solids ? The volume per particle V/n is here roughly about 1000
times smaller than in a gas under standard conditions. Hence,
if we contemplate a crystal at a temperature about 100 times
smaller (thus between 2 and 3°K.), these two circumstances
seem to lower the value of (8:8) by a factor of roughly one-
millionth, as compared with the numerical value (8-9). There is
a certain compensation by the mass m, if it is larger than 4myg
(remember that (8-9) was computed for helium gas). Yet the
situation seems to be, on the whole, unfavourable to the particle
aspect. Is then the point of view put forward in the preceding
paragraphs not flatly contradicted by the fact, that the particle
models of the structure of crystal lattices most certainly do not
break down at very low temperature—in fact, quite the
contrary ? '

SST S5
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There is, I think, no contradiction, for two reasons: First, it
follows both from theory and from experimental evidence® that
the vibrational energy of the crystal particles, while it becomes
more and more independent of temperature, yet does not
approach to zero, as T goes towards zero. It approaches, as
regards order of magnitude, to k0 per particle, where 6 is the
so-called Debye temperature, a parameter which is used in the
theoretical description of the rapid falling of the specific heat
from its Dulong-Petit value to practically zero, and which in-
“dicates roughly the region of the main slope of the curve. This
@ is always much larger than the low value of 7" we envisaged
above. It ranges from 88 (Pb) to about 2000 (C), and there is an
intrinsically understandable tendency for it to be small only for
heavy atoms or particularly wide spacing in the crystal (e.g. K, .
with 6 = 99, spacing 4-5 A.), but high for light atoms. (This
makes for a further compensation in our expression (8-8), in
which 7' is now to be replaced by 6 and which, of course, is only
to indicate the order of magnitude.)

But there is a second point that ought to be mentioned. In
spite of the usefulness of the lattice models, the great successes
in the thermodynamics of crystals involve the wave aspect, not
the particle aspect. They were reached by P. Debye, in his
theory of the specific heat of solids, mentioned above, by attri-
buting certain quantum levels not to the single particles, but
to the proper vibrations of the lattice as a whole. (This seemed,
at the time, to be a most perplexing step!) At very low tem-
perature the energy content and the specific heat of a crystal
are expressed by formulae which are, in their derivation, almost
identical replicas of those which hold for black-body radiation.
I am referring to the famous 7' or 7' law.

The very accurate location of atoms within a erystal by X-ray
methods (I mean the measuring of lattice spacing and of so-

* Concerning the intensity distribution in Laue photographs,
taken at very low temperature; the spots in the rear, scattered at

obtuse angles, remain weaker than those in front, scattered under
small angles with the incident ray.
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called ‘parameters’), if looked upon as locating individual
atoms, far surpasses the limits of accuracy drawn by the un-
certainty relation. But we must not regard those data as
referring to any single atom. The very accurate measurement
of those distances is only made possible by, and depends entirely
on, the fact that they repeat themselves millions and millions of
times throughout the crystal, in much the same way as the
distance between successive wave crests is repeated again and
again throughout a wave. Indeed, I deem the whole lattice
structure to be something very akin to a standing De Broglie
wave. It could, I think, be treated as such, but the task is
extremely intricate, on account of the very strong interaction
between these waves. (The current attitude is to treat the in-
teractions as forces between particles, to build up the crystal
lattice along the lines of the particle aspect and then to con-
template—and to quantize—the sound waves, set up in this
lattice, which have only a very weak interaction.) Yet certain
connexions are recognizable even now. For example, the
secondary beams in the X-ray-diffraction pattern are deter-
mined by the quanta of momentum which can be imparted to
the light wave by the crystal lattice, by virtue of its periodic
structure, when it is regarded as a standing wave. (This is not
a new mathematical theory of X.ray diffraction; it is an alter-
native interpretation which the current theory admits.)

Gas-degeneration proper. The quantitative study of the
deviations from the classical gas laws which occur when £ is
not very small are not of great practical interest, except for one
case, the theory of the electrons in metals. But we ought to
indicate briefly the mathematical methods of coping with the
task; these are very simple and easy of application to all cases
that are of any interest.

"First, there is the case of weak degeneration—¢ small but not
very small—the first deviations from the classical laws to be
expected on increasing the density and lowering the tempera-
ture. Even though, as I have said, they are bound to be mixed
up with other influences, it is of interest to know what part of

52
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the observed deviations could be attributed to the new ideal
gas laws. Secondly, there is the case of strong degeneration
which in the Fermi case covers precisely the electron theory
of metals (Sommerfeld, Z. Phys. vol. 47, 1928). In the Bose
case it is linked with the ‘phenomenon of Bose-Hinstein con-
densation’ which is, at any rate, of great theoretical interest—
a most unexpected discontinuous behaviour of the sum-over-
states, and therefore of the material system, which we shall
discuss in detail.

Weak degeneration. If we envisage the equations (8-1) and
(8-4) which contain the laws in the concisest form

1:471(27:,76)* Vo [©_atde , (81)
h n }-e‘”z—T-l
o ¢
o gidx
. 1 2
2 U pV 2,8 " -
3nkT  2nkT 3 [ zidz °’ (8-4)
. ”_i——-mz_
Joé’e 1

we see that we need the two integrals as functions of {. Now
for ¢ not too large (in point of fact for {< 1), one can use the
development

1 ge-_mz —2 —pl 9 D3
i = 1¢§e~w’m§e (1+fe=®* 4 {222+ ...), (8-24)
—e® I 1 .

4

and then integrate term by term. The result reads, if one
abbreviates the integrals as I, and I, respectively,

i e
I, - (c..gg et )
3 «/’n L&
To get information about the beginning degeneration, one would
have to insert the first series in (8-1), reverse it step by step in a,

(8-25)
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well-known manner, and thus get § developed by powers of the
small number A3 s

I CmkRV

This development one would insert in (8-4), after having re-
placed its second member by the power series

21, _

37, -T2 i+
obtained from (8-25) by dividing the second power series by the
first. We are not interested in following this up in any detail.
Convergence becomes poorer as { increases but actually subsists
till £ = 1. (For ¢ =1, by the way, the series represent, apart
from simple factors, the Riemannian ¢ function of argument
% and § respectively, which can be found in tables.)*

So much for weak degeneration.

Medium degeneration. This case has not come to be of any
practical interest. Mathematically it is characterized, of course,
by poor convergence of both the series we have derived for
weale, and the one we shall derive for strong degeneration.
T shall use this only as an occasion to point out a slight simpli-
fication, which holds for any {<1.

We might think that we have to evaluate numerically as
functions of ¢ four integrals, viz. the one with x? and the one
with z* in both the Bose and the Fermi case. But actually they
can be reduced to two. Not that the one with a* is reducible
to the one with 22, but the Fermi and Bose functions are
reducible to each other. For

(8-26)

1 1 _ 2
1 1 1 ’
e —1 Zed+41 e —1
4 4 g
1 2
that gives T 1 =7 —1
e 41  —e*—1 e —1
¢ g g

* See, .g., Jahnke-Emde, T'ables of Functions, B.G. Teubner,
1938.
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and by iteration

1 1 2 4 :

S UL RS SRk

Z;,—e — ze ~+ Zz—e -+ 'g—ze -+
The relations between the integrals can be easily formed from
this, when {<1. (For {>1 the Bose integral becomes meaning-
less; see below.) |

Strong degeneration. Here we must separate the two cases

entirely, for extreme degeneration means something entirely
different in the Bose-Einstein and in the Fermi-Dirac case.
Indeed, since by (8:1) the integral means a count of the
particles (see eqn. (8-6)), the integramd must mnever be
negative. Hence with the upper sign (Bose-Einstein) we must
have <1, and extreme Einstein degeneration is thus character-
ized by { = 1. We shall deal with it in the second place. With the
lower sign (Fermi-Dirac) { is allowed to exceed 1. Extreme
Fermi degeneration is characterized by {—co.

(@) Sitrong Fermi-Dirac degeneration (lower sign every-
where). The first approximation for { very large is easy to
obtain, since the characteristic factor of the integrand, viz. the
fraction (8-24)

1

T, = (8-24)

| T
e +1
4

which, it will be remembered, is the average occupation number

| ET ~ 2mk
from 1 to O at or around that value of x where the fraction is %,
i.e. where

2 ;
of a level «, (With ot = s _Ps T)’ drops almost abruptly

x = JlogZ. (8-27)

Our two integrals take therefore the values

I, =3(log 0}, I,=3(og{)t, (8-28)
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and (8-1) and (8-4) give

1= %3 - T% %(log §)§’
2 U 14 (529)
< Pr _ 2
3kT — kT~ s1086
From the first 3\# A2 [/n\?
log§ = (471') 2mkT (‘17) . (8-30)
Hence from the second (8-29)
2U 1 /3\%h% /n\t
2=37=5(z) w(7) - ®3h

The last equation contains the complete description of the
thermodynamic behaviour of a Fermi gas in the state of extreme
degeneration. The most remarkable feature—a necessary con-
sequence of the Nernst theorem-—is that the temperature has
disappeared from the formula. The gas behaves as a ‘pure
mechanism’—as indeed every system must, according to the
Nernst theorem,* in the limit 77— 0. Observe, by the way, that
the equation of state, viz. |

V\% "
p(%) = COnst,,

is exactly the same as the ‘adiabatic relation’ for an ideal mon-
atomic gas, at any temperature, in the classical theory.?

That the energy density does not depend on temperature and
‘therefore that the specific heat vanishes, is the basic virtue of
this theory in the explanation of the behaviour of the electrons

* Because there are no ‘entropy transactions’.

* The ‘adiabatic relation’ between » and V is the sarne at a}l
temperatures (and for both the Bose-Einstein and the Fermi-
Dirac gas). Indeed, it results from d@ = aU + pde =='O with
pV = 2U. But only for the extremely degenerate Fermi-Dirac gas
does it coincide with the equation of state.
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in a metal. For many years the following points had presented
a problem:

(i) The high electric and thermic conductivity of metals
point to an electron density of the order of 1 free electron per
atom.

(i) Yet the specific heats of metals obey the Dulong-Petit
law at room temperature without any trace of an electronic
contribution (which ought to have increased the value by 50 9,
if the electrons formed a classical ideal gas).

(iii) The electrons emerging from hot metals in the ‘Richard-
son effect’ show exactly the Maxwellian distribution of velocities
corresponding to that temperature, which seemed to plead
strongly for their actually forming a classical ideal gas inside
the metal—where, by the way, this same assumption also
seemed inevitable for a quantitative explanation of the electric
and thermic conductivity, of their famous ratio, and of its
temperature coefficient (= 1/273).

All these points are satisfactorily explained by the present
theory. The expected contribution to the specific heat is re-
moved since U is independent of 7'. Yet the particles, even at
the lowest temperatures, retain considerable velocities, since
the Pauli exclusion principle forces them to occupy the =
lowest states, of which the highest represent an energy much
higher than $k7'. The explanation of the conductivities and of
their ratio works out to full satisfaction (and so does the theory
of the host of ‘effects’ as Hall effect, thermo-electricity, ete.).
The paradox of the Richardson effect turns out to be a thermo-
dynamic necessity: the ‘electron vapour’ which the metal gives
off, must, by reason of its much lower density, exhibit the
properties of a non-degenerate gas at the same temperature, just
as, for example, the saturated vapour over a cold crystal is a.
classical ideal gas, although the atoms inside the crystal may
already have been reduced practically to their zero-point energy.
The mechanical reason why the electrons emerge in the Richard-
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son effect with an entirely different velocity distribution—much
smaller velocities than they have inside the metal—is, that they
have to overcome an exit barrier of potential energy, several
volts, just like an atom evaporating from a solid or liquid; it is,
of course, this potential barrier which takes the role played by
the walls of the vessel for an ordinary gas in keepmg the electrons
together.

That the electron gas is highly degenerate at room tem-
Perature, and even at the high temperatures of the Richardson
effect, is due to the co-operation of two circumstances: (i) their
comparatively high density n/V, about the same as for the atoms
of a solid; (ii) their small mass, about 1/2000th of a hydrogen
nucleus. This, according to (8:30), produces the high value of
log £, required for Fermi degeneration.

The macroscopic properties of metals for which the electrons
are responsible—with the single exception, I believe, of dia-
magnetism and perhaps of supra-conduectivity, which we do not
yet understand-—are not due to the electrons in the densely
packed region where all the successive levels are eccupied. For
there the Pauli exclusion principle forestalls a transition to a
neighbouring level, e.g. in the way that an electric field applied
to the metal ‘from left to right’ would cause the (negative)
electrons to favour such levels as have a momentum ‘ from right
to left’. For there is no question of choice—‘the bus is full’,
there are no empty seats. Thus we grasp the outstanding
importance of that ‘region of transition’ where the occupation
number n, (8-24) changes very abruptly, as I have said, but,
nevertheless, continuously from 1 to zero with increasing

R
”("‘ 2ka) :
It is the region around the x value indicated in (8-27).
That is why a better approximation than we have used above

is needed in this application. Even though I do not wish to go
into further details of the Sommerfeld theory here, I ought to
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explain the mathematical procedure. Let us take the integral

I, as an example. I, and other similar integrals that may occur
are tackled in exactly the same

way. The leading principle is

this. In the integrand of At
D el -1-6“’2 +1
I,= _1_30_022_, 4
zewz’{"l ;
0 11— ey
— : ]
the factor -i--»-—}--w- (=mn,) be- \
gemzl-i"l K 0 - s > X

x/:: Vog

haves as shown in the figure.

We have hitherto approximated it by the broken line with ordi-
nates 1 or 0. We continue to take this as the first approximation,
but develop the correction in the neighbourhood of the critical
abscissa 1/log {. It is a little more convenient to use the variable

w = x2, with wu,=log{ (8-:32)

the critical abscissa (u is, essentially, the energy); thus

© t
212=J‘ wtdu

o ev—%e 4+ 1
© wbdu Uo 1
— — 3
f S pr=re (eu_m ) 1+ 1) utdu
© uidu U ybduy o 3
.fuoe“““°+ 17 ) vyl 3%

The last term is the first approximation, the integral taken over
the broken line: the other two represent the two ‘triangular’
surfaces which have to be added and subtracted, respectively, to .
get the true value. Introduce in both integrals the positive vari-
able £, in the first by w—u, = 4,¢, in the second by 2, —u = u,l.
You then get (writing the main term first)

, 2t J(1+1) 1dt . J(1 —1)
== 2 g % T — T T T
21, = Bug+u (fo it 1 fo ot 1 )
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We commit a very small error (of relative order e=* = 1/{), if
we also terminate the first integral at ¢ = 1. Then we can unite
the two. Using the development

JLH) —J1—8) = t+ 383+ 1ht5+ ..,
we get

1 ¢d 1 3¢ 7 1 {54t
— 2 2
212—%u0+u0(f 6'Mof+1 2 6uot+l+128 Oe'uot_l_l_!_”')'
(8-33)

We commit small errors of the same order as before, if we now
extend all these integrals to infinity. After that we introduce
everywhere the integration variable u ¢, but again call it ¢. Thus

© tdt s [ t3dt © 5t
20, = Zul dtugt f() et+1+3§’uo§f t+l+1zs f t+1+ _
(8-339)

Since the integrals are now pure numbers, we have obtained a
development in descending powers of the parameter 3 = (log {)2
which is supposed to be fairly large (at the same time the above
neglect of 1/¢ is justified in the circumstances). The integrals
are simple numerical multiples of the Riemannian { function.
For example,

3

.JP: ef:l-tl_%g(z) 12,

[F2E -T2 - 15

:: eis—ftl $5518(6) = 32157;6 in general,? (8-34)
:::tp-ftl (1"'2};) (p+1),

P any natural number, not necessarily a prime. J

The expressions in 77 come from a formula,

c@r) =2 T B (8-35)

where B, is the Bernoulli number.
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I, and similar integrals can be obtained in exa,ctly the same
way. We drop the subject here.
(b) Strong Bose-Einstein degeneration. We have already
pointed out that with the lower sign in (8-1) and (8-4) the largest
admissible value of { is { = 1, because the integrand, in virtue

of its meaning, must not be negative. In thislimiting case, then,
we get from (8-1)

4(2mk)t V © y2dx Y
1= 7 all), =T (8-1")
The integral is a pure number, moreover (see (8-25)),
xi:dx Jﬂ 1 1 1
fo 2= - (1+2%+3;,+4g+...)
= Te@) = Wa12,
_ amETRV g

The strange thing is that this is the largest value the integral
can reach for {<1. But remember the equation was set up to
determine ¢ from n and the other data. It was the equation for
the minimum in the steepest descent method. And a minimum
there certainly was in every case. Yet we are faced with the fact
that, if at a given temperature in a given volume there are more
particles than the amount n determined from (8-1”), we cannot
determine &.

There is nothing for it but to go back to the original form of
the equation which was (see (7-14))

7o
There it is immediately clear that there is no upper limit to the
sum. Whether the first, the lowest, «, is exactly zero (as we have

taken it to be) or not, the first term of the sum can be made as
large as we please without any term becoming negative, if we
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let { approach the value of e (whether the latter be exactly 1,
or & little larger than 1) from below.

In order not to confuse the issue, let us keep to oy =0,
eft* = 1, though it is irrelevant and quantum-mechanically not
quite correct. By letting & take a value very near to 1, viz.

=1 --IZ,% with (say) n-t<p<1, (8-36)

any considerable fraction, say pn, of the particles can be
accommodated in the lowest level (the simple modification that
18 needed, when the first 2 or 5 or 20 levels should be exactly
equal—degenerate—can be left to the reader).

Now what about the next term of the sum? In the lowest
levels the product of the momentum® p and the dimensions of
the container V# is of the order h)27:

v h
%’N-—-—
1 27’

_ £;~8::m Pt (8-37)

hence the energy o

and this is also the order of magnitude of the lowest level steps,
Le. of the differences between successive «’s in the lowest region.
Hence for the term fajlowing o, we shall have

o h2
= ~ =
#x = ET  8m2mkT 4

This is still very small, but not of the order n-1, only »~%, as can
be seen from (8-1”), which will, of course, hold as to oit'der of
magnitude. Then from (7-14) and (8-36) we may in this next
" term already safely put £ = 1 and obtain an occupation number

of the order of nt

which is large, yet only an infinitesimal fraction of » (compare

* Please do not mix u
the pressure.

p the p in the following few lines with
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with the first occupation number fn, which may be a consider-
able fraction of n). Not larger are the following occupation
numbers, for they decrease monotonically. Skipping the next
50 or 1000, we soon come to a region where the relative change
from one level to the next is also small enough to justify com-

pletely the approximation by an integral (in fact, our ‘count’

4;3 p2*dp does not, in any event, do justice to the lowest region

which is quite irrelevant except, in this present case, for the
very lowest level or levels). And, of course, in the integral we
may safely use { = 1.

Jo 72, X density function

} L

>
Xy

In a word, (8-1”) remains valid whenever the number of
particles actually present is equal to, or greater than, the value
of n which (8-1”) indicates. But only the number »n will remain
‘alive’, as it were, spread over the energy line according to a
law, akin to that of black-body radiation, while the surplus
‘condenses’, as it were, into the very lowest state (see figure).

On compression or dilatation, if we keep the temperature
constant, the body will behave much like a saturated vapour in
contact with its condensed state. The thermodynamic state (e.g.
the pressure, the energy density) will not change until either
everything is condensed or everything is evaporated (which
means not that the lowest state is then not occupied at all, but
that the ‘hump’ has disappeared).

The ‘heat of evaporation’ is, of course, precisely the mean
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energy U of the particles in the ‘alive’ state; we take it from

(8-4) with { = 1: 2 da
% U ZJ.O e —1
3

nkT oo azzdm i
0 e — 1

The integral in the denominator has already been indicated.
The other is

© gide B 1 1
fo F_1- 24 (1+2ﬁ~+sﬁ+4z+"‘)

_ 3y, (2) 3*/'”1 341.

T2 4 2 4
' 2 U 1-341
Hence 3T 5618 0-5134.

We see that the energy in the saturated Bose-Einstein state has
just a little more than half its classical value (the same holds for
the pressure). If by isothermic compression we could clearly
reach this state and go beyond it (which is certainly not the case,
because the ideal laws are strongly distorted by the volume of
the particles and their mutual forces) the particles would lose
about half their energy gradually by a change of the distribution
function, the other half abruptly by Bose-Einstein condensation.
In itself, the region of this strong degeneration is by no means
outside the reach of experi-
ment. For helium, for ex-
ample, the required density
is not yet that of the liquid
if we take 7' as low as 1° K.
(the computation is easy, if
we use the result given in (8:9)
and compare (8-8) with our T
present (8-1)). '
It has been pointed out by F. London that traces of this
curious behaviour may be involved in the strange transition
liquid helium exhibits around a certain low temperature of a
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CmarrTrEr IX
THE PROBLEM OF RADIATION

AT an early stage (p. 44) I drew attention to the fact that our
considerations embrace the special case of electromagnetic
radiation, which is characterized by |

(i) vanishing rest-mass, which makes the energy c, a linear
function of the momentum p, instead of a quadratic one as used
hitherto;

(i) £ = 1 or, in other words, an indefinite number of particles
or quanta.

These two features are not mutually independent. For in the
subsection on annihilation of matter we have shown that quanta
- with a non-vanishing rest-mass would practlca,lly disappear if
their number were left indefinite.

There is, of course, some formal analogy with the case of
Bose-Einstein condensation, where we also have { = 1.

To obtain the customary theory, we need only envisage our
general formula for the average occupation number in the Bose

case, Viz. _ 1
Ny = e,
1
—end, — 1
4
and put { = 1 and ¢, = hv, (and of course & = 1/kT"). Thus
— 1
s = T T (9-1)

is the average number of quanta Av, in the sth state (or on
the sth ‘hohlraum’ oscillator). Considering that there are
(see p. 49)
8nVvidy
—— (9-2)
levels (or ‘oscillators’) with v, between v and v+dv, we get for
$sT 6
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the energy density (i.e. with ¥ = 1) of the monochromatic
radiation between v and v+ dv

8rh v
B T OV (9-3)

which is the famous Planck formula.

But now one point calls for discussion. I have deliberately
recalled in the preceding sentences the close analogy between
a state labelled by ‘s’ and capable of ‘accommodating’ one,
two, three, ... quanta hv,, and a quantum-mechanical oscillator.
If this view (which has, in fact, historical priority) is adopted,
the energy amounts n Av,, or

0, hv, 2hv, 3hv, ..., (9-4)

acquire the meaning of the energy levels of this oscillator. Now
in quantum mechanics the oscillator levels are not integral, but
half-odd integral multiples of a unit (viz. of k times the classical
frequency). This theoretical result has been confirmed by
experiment in all cases that could be put to test. The theoretician
can hardly refrain from asking: Would it make any difference
if we replaced the level scheme (9-4) by

3hv,, $hv,, BJhv,, ...? (9-5)

Now, this new assumption is not really covered by our for-

mula (7-1)
Z = 2 e rIng, (7-1)

(n4)

(to besummed over all permissible combinations n,, 7y, ..., g, ...)
because in all subsequent reasoning based upon it we had always
taken the », to be integers. But it is easy to estimate the change
it would involve. For in the general method of the ‘sum-over-
states’ the absolute zero level of the energy is irrelevant. If a
constant C is added to all the levels of the whole system, this
constant drops out in all results—except, of course, that the
average energy U is increased by this constant. Now in (9-5),
a8 compared with (9-4), we have increased all the levels of the
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whole system by the constant
hv, h
g Tg 2 - O

It is true that this is an infinite constant. All we can really say is:
If, at first, one introduces the innovation (9-5) up to s = r (some
large number) and, of course, in doing so, declares the zero-

point energy h o
5 2 Vg
28m1
to be something that is always present and cannot therefore
show up in any experiment on emission or absorption, then
nothing is changed, however large one takes r; and one may
perhaps consent to let r—o0. But there is little point in
tormenting one’s brain as to whether it is permissible or not to
introduce this ‘infinite zero-point energy’. The whole procedure
is clearly a toy, a plaything introduced to satisfy the quantum
physicist who fancies half-odd integral quantum numbers,
rather than integral ones.

But an entirely new point of view has turned up in the
recent work of Peng and Born, work that is designed to cope
with much more serious difficulties which arise in the theory of
radiation (and field quantization in general) when you go beyond
contemplating the state of thermodynamical equilibrium and
embark on the quantum-mechanical investigation of single
individual processes of interaction. Whether Born and Peng’s
theory will really be successful in surmounting these diffi-
culties cannot yet be said. Here I wish merely to indicate
briefly their attitude towards the equilibrium problem.

Their theory leads them to attribute to any one of those
‘hohlraum’ oscillators (characterized by the label s) two
fundamentally different situations (I say ‘situations’, because
the term ‘state’ has already been used). It can either be not
excited at all—when it has the energy zero—or excited, when it
bas one of the energies (9-5) and we might say that it accom-
modates 0, 1, 2, 3, ... quanta or ‘atoms of radiation’ (but we

shall call its occupation numbers %, , 5, ... because that is
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gimpler). As in the customary theory, the number of quanta
remains indefinite. But the number of oscillators that are at all
excited is to be a prescribed number, which we call V.

The theory must be built up anew, but it is very simple. We
start from (7-1) in which we again put, as in (7-4),

1
eTHRy =2, M= W; (7"4)
thus Z = Zzhep... 2™, (9-7)

(ns)
The new assumptions amount to admitting for every =,
ng = 0, %s 'g'a 'g, kL) (98)
but with the accessory condition, that only and exactly N out
of all the »n,'s shall differ from zero.

. In order to cope with this condition by complex integration,
as we did in previous cases, we first attach to every power
zr with 7,40 in (9-7) the factor { and then form the sum,
disregarding the accessory condition. The result we call

&) =TT (L + &t +CB4...)

1
— 3
o 131 (1+§z8 1-—-23)

T s (1+2 sinhg(ﬂ;s)> ' (99)

Our Z is obviously the coefficient of & in f({). Hence by a
process, of which we have twice given the details, we get

log Z = — (N +1)log {+logf(£), (9-10)
where { is the real positive root of
__N+1_ f1(&) .
0= 7 +f(€)' (9-11)

(In (9-10) a certain correction term is omitted right away. The
reader will easily justify this for himself, if he so desires.) From
the last expression (9-9) and from (9-11), where we drop the odd
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‘1’in ‘N +1°, we easily find

N=X; L“ .
: 8
: Zsmh 5 +1
It is easy to guess what the summandus means: since N is the
number of excited oscillators, the term is probably the mean ex-
citation number (as opposed to the mean occupation number 7,).
We shall compute both beginning with the latter, because it
is to us the more familiar thing. Contemplate (9-7), the sum-
over-states. Its single terms are, as we know, the relative
probabilities of the various possible states of the whole (each
state characterized by a set of numbers n,). n,, for a particular
8, is found by multiplying every term by its n,, summing, and
dividing by Z itself. That can be done in this way:*

— OlogZ  1dlogZ .
s T *g oz, m"*ﬁ""—a—&:—'- (9-13)

Now use (9:-10) for log Z. According to (9-11) the implicit
(‘via {’) differentiation contributes nothing and from (9-9)

(9-12)

logf(§) = Zlog [1+ ¢ . (9-14)
: 2 sinh ("‘"‘8)
Hence 2
178—_:-.-1_810gz—_= 1 4 7%cosh&
S T WU S— [sinh (““3)] 2
2 sinh (,uocs) 2
2 . “
_ 1 J772 2
e g . (/,LOCS) 1 % COta»l’lh"—é-
4 2
1 1 1
= -—-—l-_............_..___-.. . (9.15)
2 . ML (2 eHy — 1)

The expression is translucent—but we delay its discussion.

* The expression is known from (7-2), and we mmight have
quoted it from there.
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The mean excitation number of the sth oscillator (call it &,)
is obtained from (9-7) by taking the sum of all those terms in
which 7,40 and dividing it by Z itself. Since the terms in

question vanish for z, = 0, while the others are not affected,
we have

> = 2= Zeo _ 1 _Zemo

es T e e,

Z | zZ
Hence log (1 —¢&;) = log Z,,._q—log Z.
Since z; = 0 means ¢, = 00, we get from (9-10) and (9-9)
log(l1—¢,) = —log [1+ & , (9-16)
2¢inh (,uocs)
2
or €, =1-— 1 7
1+ T
2smh( 5 )
= ; — (9-17)
- 3
-é-:smh 5 +1

This is, indéed, as we anticipated, the summandus in (9:12) and
also the first factor in (9-15).

The discussion is now very simple. The excitation numbers
form something very like a Fermi distribution, except that

2 sinh & ; ® stands for e#e., which makes little difference. If we

want (9-15) to represent virtually the Planck formula, the
Fermi distribution &, must be strongly degenerate, i.e. £ must
be very large. According to (9-12) this is attained by taking N
very large. Then &, will be very nearly 1 up to a certain s (=~N),
where it drops to zero. And then (9-15), which can be written

_ /1 1
Ty = es(§+eﬂ%__1) : (9-18)

does not appreciably differ from the Planck distribution,
provided that N is large enough to embrace virtually the whole
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Planck distribution. (What is stopped near s~ N is only the
contribution 4y, to the zero-point energy, which therefore
remains finite.)

Well, that is the whole story, for the time being, except for
one pertinent remark.

What stops the zero-point energy from becoming infinite is
not the N-condition, but the admittance of the level O for each
oscillator. The IV-condition is required to restrict the total
number of excited levels below, not above (‘nach unten, nicht
nach oben’). Indeed, nothing is changed if it is replaced by the
mequality: number of excited levels to be >N (but <N
would not do).

To see this, remember that the coefficient of ¢V in f({) was
igolated by forming the residue of

&), (9-19)
that this leads to (9:10), and that { must result very large. Now
if we chose the inequality condition (=) instead, we should
have to collect the coefficients of all (¥’ for which N/ = N. But
to avoid a second infinite process, let us rather collect those with
N'< N and subtract them from f(1) (which is the sum of all
coefficients). So we form

(E+L2+ ..+ NS = §“1 g_.lf(é’) g 1 f(é')

and get for Z in the present case

Z =) g O &

Note that the integrand has no singularity at { = 1 (in fact none
but the one at the origin); hence we may choose for integration
a circle with | {|>1, and as large as we please. After that, we
split the integral into the sum of two integrals, according to the
numerator. The first, according to Cauchy’s theorem, cancels

(1) and h —
f(1) and we have § Nf(éf) a.

4 = 27n
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The fact that this now has a singularity at { = 1 is irrelevant,
for the equation is established; we have only to evaluate it.

We do so by the steepest descent method. But then it is clear

that with N a very large number

(i) the saddle- -point will be found at §>1, provided the
situation is such that it would be found at a { appreciably >1
if the factor were {—-1 in lieu of (/¢ —

(ii) that being so, the result will practica,lly be the same as
before (the change can hardly be greater, than if N changed
by one unit).

If the N-condition were dropped altogether, one would, of
course, get { = 1 as on previous occasions. That is inadmissible,

_ because it is easily seen that the result would deviate vndely
from Planck’s formula.






